Showing posts with label synthetic cannabinoids. Show all posts
Showing posts with label synthetic cannabinoids. Show all posts

Friday, September 2, 2016

Synthetic Dialectic


Banning New Drugs: What is the Path Forward?

Eighteen months ago, in a post on novel synthetic drugs in the cannabinoid and cathinone families, I wrote that the new fake marijuana and fake Ecstasy were “very nearly the perfect overdose drugs.”  An MDMA-like stimulant called PMMA was implicated in a number of deaths in Florida, Chicago, and Ireland back then. PMMA, like many synthetic highs, is toxic at low doses, and takes a fair amount of time to take effect, thereby encouraging double dosing.

A year and a half later, what has changed? Today’s synthetic pharmaceuticals are not coming from secret underground laboratories, but rather from legitimate, existing Chinese pharmaceutical and chemical companies. In a commentary published in Addiction, Michael Evans-Brown and Roumen Sedefov of the European Monitoring Centre for Drugs and Drug Addiction in Lisbon present an unusually dystopian picture of new psychoactive substances fueling ever-increasing complexities in the world drug market. The authors refer to the situation as a textbook example “of what can happen when entrepreneurs exploit globalization and technology.” They write:

The market continues to grow. Consumers are no longer limited to psychonauts and clubbers, but include the vulnerable and marginalized, such as problem drug users and prisoners… manufacturers have replacement substances ready for sale even before a substance is controlled; the recipes for many thousands more are in the scientific and patent literature ripe for the picking.

The authors provide a grisly list of recent synthetic cannabinoid incidents: In Russia, products containing MDMB-FUBINACA were implicated in more than 600 poisonings and 15 deaths in two weeks in 2014. The same drug was linked to as many as 700 suspected adverse events in a single month in Mississippi in 2015, and in Europe, more than 200 people were hospitalized in Poland last year after smoking something called Mocarz. The causes of these mass poisonings, according to the authors include “high potency of synthetic cannabinoids, producers guess[ing] how much substance to use, and poor manufacturing processes leading to uneven distribution of the substance in the product—manufacturing flaws that are a recipe for disaster.” When users have no idea—not even a reasonable guess—at what chemical they are actually using, regulation and public health initiatives become exceedingly difficult.

In a bold and, according to some drug policy analysts, deeply misguided move, UK officials, tired of the drugs “arms race,” and the cat-and-mouse game of enforcement, made an attempt to do away with synthetic drugs in one monumental swipe, passing the Psychoactive Substances Act. In its earlier incarnations, the measure banned just about everything, including foods with caffeine and alcohol. Having straightened that out somewhat, the United Kingdom now faces a synthetic highs crackdown that drug charity DrugWise said will only push the market underground, “from the shops to the street.” If you think that’s a major improvement, raise your hand.

Another drug policy group, Transform, believes that the ban was aimed rather cynically at “visible sales,” in an effort to demonstrate some political PR success stories. Jane Slater, head of operations for Transform, told Huffington Post UK : “Far from making our communities safer the ban has resulted in increased health harms and criminality.”

“Laws just push forward the list of compounds,” according to Dr. Duccio Papanti, a psychiatrist at the University of Trieste who studies the new drugs. “The market is very chaotic, bulk purchasing of pure compounds are cheaply available from China, India, Hong-Kong, but small labs are rising in Western Countries, too.”

A spokesman for the UK Home Secretary pushed back, saying that “These drugs are not legal, they are not safe and we will not allow them to be sold in this country.”

Still, this negative spiral is not steady or inevitable. “Given how fashions and societies change," the authors note, "it is true that we do not know what the fate will be for many substances [remember that Quaaludes, not MDMA were the original disco biscuits]: but it is also fair to say that suppliers are not looking for the next cannabis, MDMA, heroin or diazepam; they simply make substances that can mimic their effects and that can be produced, transported and sold freely.”

It continues. On September 1, the Irish Examiner  reported that a related cannabis drug, MDMB-CHMICA, often peddled as Black Mamba, has been linked to more than two dozen death in Europe. The European Monitoring Centre for Drugs and Drug Addiction confirmed 25 cases, involving comas, heart problems or seizures. “The high potency of MDMB-CHMICA and the highly variable amounts of the substances in ‘legal high’ products constitute a high risk of acute toxicity.”

In 1975, underground chemist Alexander Shulgin wrote that the variety of drugs capable of causing abuse problems was expanding rapidly. He did not envision an adroit way out of that spiral: “As these materials become better defined and their use better controlled, they will be replaced with substitute compounds, which will provide society with new, unknown, and unmanageable substances.” Managing these new risks effectively will require new and almost unimaginably sophisticated early warning systems to protect the public from new toxic offerings.


Thursday, February 5, 2015

Update on Synthetic Drug Surprises


Spicier than ever.


Four drug deaths last month in Britain have been blamed on so-called “Superman” pills being sold as Ecstasy, but actually containing PMMA, a synthetic stimulant drug with some MDMA-like effects that has been implicated in a number of deaths and hospitalizations in Europe and the U.S. The “fake Ecstasy” was also under suspicion in the September deaths of six people in Florida and another three in Chicago. An additional six deaths in Ireland have also been linked to the drug. (See Drugs.ie for more details.)

PMMA, or paramethoxymethamphetamine, causes dangerous increases in body temperature and blood pressure, is toxic at lower doses than Ecstasy, and requires up to two hours in order to take effect.

In other words, very nearly the perfect overdose drug.

Whether you call them “emerging drugs of misuse,” or “new psychoactive substances,” these synthetic highs have not gone away, and aren’t likely to. As Italian researchers have noted, “The web plays a major role in shaping this unregulated market, with users being attracted by these substances due to both their intense psychoactive effects and likely lack of detection in routine drug screenings.” Even more troubling is the fact that many of the novel compounds turning up as recreational drugs have been abandoned by legitimate chemists because of toxicity or addiction issues.

The Spice products—synthetic cannabinoids—are still the most common of the novel synthetic drugs. Hundreds of variants are now on the market. Science magazine recently reported on a UK study in which researchers discovered more than a dozen previously unknown psychoactive substances by conducting urine samples on portable toilets in Greater London. Call the mixture Spice, K2, Incense, Yucatan Fire, Black Mamba, or any other catchy, edgy name, and chances are, some kids will take it, both for the reported kick, and for the undetectability. According to NIDA, one out of nine U.S. 12th graders had used a synthetic cannabinoid product during the prior year.

“Laws just push forward the list of compounds,” Dr. Duccio Papanti, a psychiatrist at the University of Trieste who studies the new drugs, said in an interview for this article. “The market is very chaotic, bulk purchasing of pure compounds are cheaply available from China, India, Hong-Kong, but small labs are rising in Western Countries, too. Some authors point out that newer compounds are more related to harms (intoxications and deaths) than the older ones. You can clearly see from formulas that newer compounds are different from the first ones: new constituents are added, and there are structural changes, so although we have some clues about the metabolism of older, better studied compounds, we don't know anything about the newer (and currently used) ones."

The problems with synthetic cannabinoids often begin with headaches, vomiting, and hallucinations. At the Department of Medical, Surgical, and Health Sciences at the University of Trieste, researchers Samuele Naviglio, Duccio Papanti, Valentina Moressa, and Alessandro Ventura characterized the typical ER patient on synthetic cannabinoids, in a BMJ article: “On arrival at the emergency department he was conscious but drowsy and slow in answering simple questions. He reported frontal headache (8/10 on a visual analogue scale) and photophobia, and he was unable to stand unassisted. He was afebrile, his heart rate was 170 beats/min, and his blood pressure was 132/80 mm Hg.”

According to the BMJ paper, the most commonly reported adverse symptoms include: "Confusion, agitation, irritability, drowsiness, tachycardia, hypertension, diaphoresis [sweating], mydriasis [excessive pupil dilation], and hallucinations. Other neurological and psychiatric effects include seizures, suicidal ideation, aggressive behavior, and psychosis. Ischemic stroke has also been reported. Gastrointestinal toxicity may cause xerostomia [dry mouth], nausea, and vomiting. Severe cardiotoxic effects have been described, including myocardial infarction…”

In a recent article (PDF) for World Psychiatry, Papanti and a group of other associates revealed additional features of synthetic cannabimemetics (SC), as they are officially known: “For example, inhibition of γ-aminobutyric acid receptors may cause anxiety, agitation, and seizures, whereas the activation of serotonin receptors and the inhibition of monoamine oxidases may be responsible for hallucinations and the occurrence of serotonin syndrome-like signs and symptoms.”

Papanti says researchers are also seeing more fluorinated drugs. “Fluorination is the incorporation of fluorine into a drug,” he says, one effect of which is “modulating the metabolism and increasing the lipophilicity, and enhancing absorption into biological membranes, including the blood-brain barrier, so that a drug is available at higher concentrations. An increasing number of fluorinated synthetic cannabinoids are available, and fluorinated cathinones are available, too.”

A primary problem is that physicians are still largely unacquainted with these chemicals, several years after their current popularity began. This is entirely understandable. In addition to the synthetic cathinones, several new mind-altering substances based on compounds discovered decades ago have also surfaced lately. Papanti provided a partial list of additional compounds that have led to official concern in the EU:

—Synthetic opioids (the best known are AH-7921, MT-45)
—Synthetic stimulants (the best known are MDPV, 4,4'-DMAR)
—New synthetic psychedelics (the NBOMe series)
—New dissociatives (Methoxetamine, Methoxphenidine, Diphenidine)
—New performance enhancing drugs (Melanotan, DNP)
—Gaba agonists (Phenibut, new benzodiazepines)

Most of the new and next-generation synthetics are not readily detected by standard drug screen processes. Spice drugs will not usually show up on anything but the most advanced test screening, using gas chromatography or liquid chromatography-tandem mass spectrometry—high tech tools which are rarely available for anything but serious (and costly) forensic investigations.

“Testing is a big problem,” Papanti declares. “From a clinical point of view, do you need the test to make a diagnosis of intoxication, for following up an addiction treatment, or for forensic purposes? With the new drugs, maybe taken together, with different pharmacology, we are not very sure about this yet. If I want to have confirmation of a diagnosis of SC intoxication, I need two weeks as an average, in order to obtain the result. Your patient has been discharged by that time, or in the worse case, he is dead.”

 Another major problem, according to Papanti, “is that the machines need sample libraries in order to recognize the compound, and samples mean money. Plus, they need to be continuously updated.”

In summary, there is no antidote to these drugs, but intoxication is general less than 24 hours, and the indicated medical management is primarily supportive. If you plan to take a drug marketed as Ecstasy, or indeed any of the spice or bath salt compounds, Drugs.ie notes that there are some basic rules of conduct that will help maximize the odds of a safe trip:

—If you don’t “come up” as quickly as anticipated, don’t assume you need another pill. PMMA can take two hours or more to take effect. Do not “double drop.”

—If you don’t feel like you expected to feel, and are noticing a “pins-and-needles” feeling or numbness in the limbs, consider the possibility that another drug is involved.

—Don’t mix reputed Ecstasy with other drugs, especially alcohol, as PMMA reacts very dangerously with excessive alcohol.

—Remember to hydrate, but don’t overhydrate. If you go dancing, figure on about a pint per hour.

Tuesday, August 12, 2014

Synthetic Cannabis Can Cause Cyclic Vomiting


Another reason to skip "Spice."

Cannabinoid hyperemesis,  as it is known, was not documented in the medical literature until 2004. Case studies of more than 100 patients have been reported since then. The biomedical researcher who blogs as Drugmonkey has documented cases of hyperemesis that had been reported in Australia and New Zealand, as well as Omaha and Boston in the U.S.

As Drugmonkey reported, patients who are heavy marijuana smokers, and who experience cyclic nausea and vomiting, “discovered on their own that taking a hot bath or shower alleviated their symptoms. So afflicted individuals were taking multiple hot showers or baths per day to obtain symptom relief.”

A recent report in Mayo Clinic Proceedings by Dr. Benjamin L. Bick and colleagues documents the 3rd reported case of the syndrome in a regular user of synthetic Spice-style products, rather than marijuana. It’s now clear that THC isn’t necessary for triggering the rare but highly unpleasant vomiting cycle in a small fraction of users.

“A 29-year-old man presented with a 2-year history of recurrent episodes of severe nausea and vomiting with epigastric pain,” according to the authors. Drug tests were negative, including tests for THC. “For his more recent symptoms, he was evaluated multiple times in the primary care setting and emergency department. At each visit he denied use of any ‘illicit substances or drugs’ since he quit using marijuana.”

“Hot showers for up to an hour provided relief. He reported experiencing similar symptoms more than 5 years previously when he was regularly smoking marijuana, and these symptoms resolved with the cessation of cannabis.”

The patient eventually admitted to regularly smoking products sold as K2 and Kryptonite, containing “unidentified and uncertain synthetic cannabinoid agonists marketed as ‘legal’ herbal incense.”

The Mayo clinicians offer diagnostic criteria for cannabis hyperemesis, which include “long-term cannabis use, cyclic nausea and vomiting, resolution with cessation of cannabis, relief of symptoms with hot showers, abdominal pain, and weekly use of marijuana.” And theirs is the third published report of cannabis hyperemesis in a male patient after synthetic cannabinoid use. “After 6 months abstinence,” they report, “he noted complete resolution of symptoms.”

The researchers conclude that “synthetic cannabinoids can be potent agonists of the cannabinoid CB1 receptors, which are the same receptors by which THC produces its effects.” While only three Spice-related incidents of hyperemesis syndrome have thus far been identified, it may go unrecognized in patients using synthetic cannabinoids:

 A urine drug screen negative for THC may point physicians away from this syndrome, and patients may not report use if they believe they are using herbal products rather than illicit drugs. Therefore, regardless of negative urine drug screen results and patient denial of cannabis use, physicians should have a high index of suspicion for synthetic CH syndrome in patients who present with classic symptoms of cyclic emesis.

Sarah A. Buckley and Nicholas M. Mark at the NYU School of Medicine, after reviewing 16 published papers on the syndrome,  asked the obvious question: "How can marijuana, which is used in cancer clinics as an anti-emetic, cause intractable vomiting? And why would symptoms abate in response to high temperature?"

We don't know the answer, but Buckley and Mark note that "cannabis disrupts autonomic and thermoregulatory functions of the hippocampal-hypothalamic-pituitary system," which is loaded with CB-1 receptors. The researchers conclude, however, that the link between marijuana and thermoregulation "does not provide a causal relationship" for what they refer to as "this bizarre learned behavior.”

Bick B.L. &  Thomas F. Mangan (2014). Synthetic Cannabinoid Leading to Cannabinoid Hyperemesis Syndrome, Mayo Clinic Proceedings, 89 (8) 1168-1169. DOI: http://dx.doi.org/10.1016/j.mayocp.2014.06.013

Photo credit: http://www.aquaticcreationsnc.com/custom.htm

Thursday, July 31, 2014

Avoid the ‘Noid: Synthetic Cannabinoids and “Spiceophrenia”


Like PCP all over again.

Synthetic cannabis-like “Spice” drugs were first introduced in early 2004, and quickly created a global marketplace. But the drugs responsible for the psychoactive effects of Spice products weren’t widely characterized until late 2008. And only recently have researchers made significant progress toward understanding why these drugs cause so many problems, compared to organic marijuana.

Synthetic cannabinoids (SC), as a class of drugs, are generally more potent at cannabinoid receptors than marijuana itself.  As full agonists, synthetic cannabinoids show binding affinities between 5 and 10,000 times higher than THC at these receptors.

A recent literature study by Duccio Papanti at the University of Trieste and coworkers sheds additional light on the problematic nature of these drugs. In an article for Advances in Dual Diagnosis titled “’Noids in a nutshell: everything you (don’t) want to know about synthetic cannabimimetics,” the researchers note that “Spice products’ effects have been anecdotally described by users as intense and ‘trippy’ marijuana-like, with hallucinatory experiences being associated with higher levels of intake. In comparison with cannabis, SC compounds may be associated with quicker ‘kick off’ effects; significantly shorter duration of action; larger levels of hangover effects; and more frequent paranoid feelings.”

The study also points out a trouble spot: “Super-concentrations of synthetic cannabinoids (e.g. ‘hot-spots’) in herbal blends, originating from a non-optimal homogenization between synthetic cannabinoids and the vegetal substrate, can result in overdoses/intoxications and ‘bad trips’ in users.” In other words, the chemical powder is often so poorly mixed with the vegetable matter that potencies in the batch can be way too high, depending upon the luck of the draw, and are bound to vary from batch to batch in any event.

Nonetheless, there is a cluster of specific health effects that brings users to the emergency room. The typical set of symptoms—bearing in mind that polydrug use always complicates the picture—include elevated heart rate, elevated blood pressure, visual and auditory hallucinations, agitation, anxiety, nausea, vomiting, and seizures.

The authors note that “nausea and seizures are very uncommon in marijuana use, due to the suggested anticonvulsant/antiemetic properties of cannabis.” In fact, misusers who present doctors with vomiting as a symptom are often assumed to be free of cannabis-type drugs. Not so with synthetic cannabinoids. In an email interview, lead author Duccio Papanti told me that “many users describe the occurrence of vomiting, even with a non-recurrent and low use of these compounds. My idea is that this may be due to the smoking of hot-spotted blends, and that at high concentrations these compounds can work more on 5-HT receptors (in fact, vomit and seizures are signs of a serotonin syndrome).”

Less common, luckily, are other medical issues like heart attack, kidney injuries, and stroke. Of primary concern, the authors warn, are the reported incidents of “transient psychotic episodes,” “relapse of a primary psychosis,” and “‘ex novo’ psychosis in previous psychosis-free subjects.”

As for the mechanism behind the reported hallucinogenic effects: “A number of synthetic cannabinoids contain an indole moiety, either in their basic structure or in their substituents.” Indoles are molecular groups structurally similar to serotonin, and are active in drugs like LSD and DMT.

“According to this finding,” Papanti says, “their use could interfere with serotonin 5-HT neurotransmission more than THC. It is possible that the indole moieties incorporated in the molecules of synthetic cannabinoids can bind 5-HT2 receptors, acting as an hallucinogenic drug (in fact visual hallucinations are not uncommon in SC use).”

 One of the main problems, of course, is that physicians know almost nothing about detecting and treating acute overdoses of synthetic cannabinoid products. And even if an OD victim was lucky enough to wash up at a health facility that had access to instant chromatography detection testing, “[due to] the lack of appropriate reference samples, SC compounds are difficult to identify.”

The risk here is not evenly distributed, obviously. Young people, and anybody subject to marijuana urine testing, are the clear market for these products. This includes students, athletes, members of the Armed Forces, transportation workers, mining workers, and many others. Spice users are overwhelmingly male.

How many people are taking the risk? An estimate of student use comes from the U.S. 2013 “Monitoring the Future” survey, which shows that about 8% of 17-18 year-olds have tried Spice products. For 12th graders, Spice products are second only to marijuana itself in many districts. And yet there is a dearth of longitudinal studies in humans to evaluate the long-term impact of using synthetic cannabinoids.

Papanti and colleagues call for the creation of an international agency dedicated to “toxicovigilance” based on a “non-biased ‘real-time’ database,” including adverse drug effects, as a way of clarifying and promoting appropriate clinical guidelines for Spice drugs. “These substances are dangerous, and they have been associated with a number of deaths,” Papanti says. He would like to see a “network in which users report their adverse effects. Such an online system already exists in the Pharmacovigilance program at the Lareb Centre in the Netherlands. They collect reports of medications’ adverse effects from both patients and doctors and it works very well.”

Tolerance, dependence, and withdrawal have all been documented in several categories of Spice products. Spice withdrawal effects can be severe, the authors say, and may include craving, tremor, profuse sweating, insomnia, anxiety, irritability and depression.

Graphics Credit:  http://www.caregroupnz.org.nz/drug-prevention-education-campaign/

Saturday, July 26, 2014

Getting Spiced


Synthetic cannabis is stronger than it used to be.

First published 10/07/2013

I wish I could stop writing blog posts about Spice, as the family of synthetic cannabinoids has become known. I wish young people would stop taking these drugs, and stick to genuine marijuana, which is far safer. I wish that politicians and proponents of the Drug War would lean in a bit and help, by knocking off the testing for marijuana in most circumstances, so the difficulty of detecting Spice products isn’t a significant factor in their favor. I wish synthetic cannabinoids weren’t research chemicals, untested for safety in humans, so that I could avoid having to sound like an alarmist geek on the topic.  I wish I didn’t have to discuss the clinical toxicity of more powerful synthetic cannabinoids like JWH-122 and JWH-210. I wish talented chemists didn’t have to spend precious time and lab resources laboriously characterizing the various metabolic pathways of these drugs, in an effort to understand their clinical consequences. I wish Spice drugs didn’t make regular cannabis look so good by comparison, and serve as an argument in favor of more widespread legalization of organic marijuana.

A German study, published in Addiction, seems to demonstrate that “from 2008 to 2011 a shift to the extremely potent synthetic cannabinoids JWH-122 and JWH-210 occurred…. Symptoms were mostly similar to adverse effects after high-dose cannabis. However, agitation, seizures, hypertension, emesis, and hypokalemia  [low blood potassium] also occurred—symptoms which are usually not seen even after high doses of cannabis.”

The German patients in the study were located through the Poison Information Center, and toxicological analysis was performed in the Institute of Forensic Medicine at the University Medical Center Freiburg. Only two study subjects had appreciable levels of actual THC in their blood. Alcohol and other confounders were factored out. First-time consumers were at elevated risk for unintended overdose consequences, since tolerance to Spice drug side effects does develop, as it does with marijuana.

Clinically, the common symptom was tachycardia, with hearts rates as high as 170 beats per minute. Blurred vision, hallucinations and agitation were also reported, but this cluster of symptoms is also seen in high-dose THC cases that turn up in emergency rooms. The same with nausea, the most common gastrointestinal complaint logged by the researchers.

But in 29 patients in whom the presence of synthetic cannabinoids was verified, some of the symptoms seem unique to the Spice drugs. The synthetic cannabinoids caused, in at least one case, an epileptic seizure. Hypertension and low potassium were also seen more often with the synthetics. After the introduction of the more potent forms, JWH-122 and JWH-210, the symptom set expanded to include “generalized seizures, myocloni [muscle spasms] and muscle pain, elevation of creatine kinase and hypokalemia.” The researchers note that seizures induced by marijuana are almost unheard of. In fact, studies have shown that marijuana has anticonvulsive properties, one of the reason it is popular with cancer patients being treated with radiation therapy.

And there are literally hundreds of other synthetic cannabinoid chemicals waiting in the wings. What is going on? Two things. First, synthetic cannabinoids, unlike THC itself, are full agonists at CB1 receptors. THC is only a partial agonist. What this means is that, because of the greater affinity for cannabinoid receptors, synthetic cannabinoids are, in general, stronger than marijuana—strong enough, in fact, to be toxic, possibly even lethal. Secondly, CB1 receptors are everywhere in the brain and body. The human cannabinoid type-1 receptor is one of the most abundant receptors in the central nervous system and is found in particularly high density in brain areas involving cognition and memory.

The Addiction paper by Maren Hermanns-Clausen and colleagues at the Freiburg University Medical Center in Germany is titled “Acute toxicity due to the confirmed consumption of synthetic cannabinoids,” and is worth quoting at some length:

The central nervous excitation with the symptoms agitation, panic attack, aggressiveness and seizure in our case series is remarkable, and may be typical for these novel synthetic cannabinoids. It is somewhat unlikely that co-consumption of amphetamine-like drugs was responsible for the excitation, because such co-consumption occurred in only two of our cases. The appearance of myocloni and generalized tonic-clonic seizures is worrying. These effects are also unexpected because phytocannabinoids [marijuana] show anticonvulsive actions in humans and in animal models of epilepsy.

The reason for all this may be related to the fact that low potassium was observed “in about one-third of the patients of our case series.” Low potassium levels in the blood can cause muscle spasms, abnormal heart rhythms, and other unpleasant side effects.

One happier possibility that arises from the research is that the fierce affinity of synthetic cannabinoids for CB1 receptors could be used against them. “A selective CB1 receptor antagonist,” Hermanns-Clausen and colleagues write, “for example rimonabant, would immediately reverse the acute toxic effects of the synthetic cannabinoids.”

The total number of cases in the study was low, and we can’t assume that everyone who smokes a Spice joint will suffer from epileptic seizures. But we can say that synthetic cannabinoids in the recreational drug market are becoming stronger, are appearing in ever more baffling combinations, and have made the matter of not taking too much a central issue, unlike marijuana, where taking too much leads to nausea, overeating, and sleep.

(See my post “Spiceophrenia” for a discussion of the less-compelling evidence for synthetic cannabinoids and psychosis).

Hermanns-Clausen M., Kneisel S., Hutter M., Szabo B. & Auwärter V. (2013). Acute intoxication by synthetic cannabinoids - Four case reports, Drug Testing and Analysis,   n/a-n/a. DOI: 10.1002/dta.1483

Graphics Credit: http://www.aacc.org/

Monday, October 7, 2013

Spiced: Synthetic Cannabis Keeps Getting Stronger


Case reports of seizures in Germany from 2008 to 2011.

I wish I could stop writing blog posts about Spice, as the family of synthetic cannabinoids has become known. I wish young people would stop taking these drugs, and stick to genuine marijuana, which is far safer. I wish that politicians and proponents of the Drug War would lean in a bit and help, by knocking off the testing for marijuana in most circumstances, so the difficulty of detecting Spice products isn’t a significant factor in their favor. I wish synthetic cannabinoids weren’t research chemicals, untested for safety in humans, so that I could avoid having to sound like an alarmist geek on the topic.  I wish I didn’t have to discuss the clinical toxicity of more powerful synthetic cannabinoids like JWH-122 and JWH-210. I wish talented chemists didn’t have to spend precious time and lab resources laboriously characterizing the various metabolic pathways of these drugs, in an effort to understand their clinical consequences. I wish Spice drugs didn’t make regular cannabis look so good by comparison, and serve as an argument in favor of more widespread legalization of organic marijuana.

A German study, published in Addiction, seems to demonstrate that “from 2008 to 2011 a shift to the extremely potent synthetic cannabinoids JWH-122 and JWH-210 occurred…. Symptoms were mostly similar to adverse effects after high-dose cannabis. However, agitation, seizures, hypertension, emesis, and hypokalemia  [low blood potassium] also occurred—symptoms which are usually not seen even after high doses of cannabis.”

The German patients in the study were located through the Poison Information Center, and toxicological analysis was performed in the Institute of Forensic Medicine at the University Medical Center Freiburg. Only two study subjects had appreciable levels of actual THC in their blood. Alcohol and other confounders were factored out. First-time consumers were at elevated risk for unintended overdose consequences, since tolerance to Spice drug side effects does develop, as it does with marijuana.

Clinically, the common symptom was tachycardia, with hearts rates as high as 170 beats per minute. Blurred vision, hallucinations and agitation were also reported, but this cluster of symptoms is also seen in high-dose THC cases that turn up in emergency rooms. The same with nausea, the most common gastrointestinal complaint logged by the researchers.

But in 29 patients in whom the presence of synthetic cannabinoids was verified, some of the symptoms seem unique to the Spice drugs. The synthetic cannabinoids caused, in at least one case, an epileptic seizure. Hypertension and low potassium were also seen more often with the synthetics. After the introduction of the more potent forms, JWH-122 and JWH-210, the symptom set expanded to include “generalized seizures, myocloni [muscle spasms] and muscle pain, elevation of creatine kinase and hypokalemia.” The researchers note that seizures induced by marijuana are almost unheard of. In fact, studies have shown that marijuana has anticonvulsive properties, one of the reason it is popular with cancer patients being treated with radiation therapy.

And there are literally hundreds of other synthetic cannabinoid chemicals waiting in the wings. What is going on? Two things. First, synthetic cannabinoids, unlike THC itself, are full agonists at CB1 receptors. THC is only a partial agonist. What this means is that, because of the greater affinity for cannabinoid receptors, synthetic cannabinoids are, in general, stronger than marijuana—strong enough, in fact, to be toxic, possibly even lethal. Secondly, CB1 receptors are everywhere in the brain and body. The human cannabinoid type-1 receptor is one of the most abundant receptors in the central nervous system and is found in particularly high density in brain areas involving cognition and memory.

The Addiction paper by Maren Hermanns-Clausen and colleagues at the Freiburg University Medical Center in Germany is titled “Acute toxicity due to the confirmed consumption of synthetic cannabinoids,” and is worth quoting at some length:

The central nervous excitation with the symptoms agitation, panic attack, aggressiveness and seizure in our case series is remarkable, and may be typical for these novel synthetic cannabinoids. It is somewhat unlikely that co-consumption of amphetamine-like drugs was responsible for the excitation, because such co-consumption occurred in only two of our cases. The appearance of myocloni and generalized tonic-clonic seizures is worrying. These effects are also unexpected because phytocannabinoids [marijuana] show anticonvulsive actions in humans and in animal models of epilepsy.

The reason for all this may be related to the fact that low potassium was observed “in about one-third of the patients of our case series.” Low potassium levels in the blood can cause muscle spasms, abnormal heart rhythms, and other unpleasant side effects.

One happier possibility that arises from the research is that the fierce affinity of synthetic cannabinoids for CB1 receptors could be used against them. “A selective CB1 receptor antagonist,” Hermanns-Clausen and colleagues write, “for example rimonabant, would immediately reverse the acute toxic effects of the synthetic cannabinoids.”

The total number of cases in the study was low, and we can’t assume that everyone who smokes a Spice joint will suffer from epileptic seizures. But we can say that synthetic cannabinoids in the recreational drug market are becoming stronger, are appearing in ever more baffling combinations, and have made the matter of not taking too much a central issue, unlike marijuana, where taking too much leads to nausea, overeating, and sleep.

(See my post “Spiceophrenia” for a discussion of the less-compelling evidence for synthetic cannabinoids and psychosis).

Hermanns-Clausen M., Kneisel S., Hutter M., Szabo B. & Auwärter V. (2013). Acute intoxication by synthetic cannabinoids - Four case reports, Drug Testing and Analysis,   n/a-n/a. DOI:

Graphics Credit: http://www.aacc.org/

Thursday, August 22, 2013

“Spiceophrenia”


Synthetic cannabimimetics and psychosis.

Not long ago, public health officials were obsessing over the possibility that “skunk” marijuana—loosely defined as marijuana exhibiting THC concentrations above 12%, and little or no cannabidiol (CBD), the second crucial ingredient in marijuana—caused psychosis. In some cases, strong pot was blamed for the onset of schizophrenia.

The evidence was never very solid for that contention, but now the same questions have arisen with respect to synthetic cannabimimetics—drugs that have THC-like effects, but no THC. They are sold as spice, incense, K2, Aroma, Krypton, Bonzai, and dozens of other product monikers, and have been called “probationer’s weed” for their ability to elude standard marijuana drug testing. Now a group of researchers drawn primarily from the University of Trieste Medical School in Italy analyzed a total of 223 relevant studies, and boiled them down to the 41 best investigations for systematic review,  to see what evidence exists for connecting spice drugs with clinical psychoses.

Average age of users was 23, and the most common compounds identified using biological specimen analysis were the now-familiar Huffman compounds, based on work at Clemson University by John W. Huffman, professor emeritus of organic chemistry: JWH-018, JWH-073, JWH-122, JWH-250. (The investigators also found CP-47,497, a cannabinoid receptor agonist developed in the 80s by Pfizer and used in scientific research.) The JWH family consists of very powerful drugs that are full agonists at CB-1 and CB-2 receptors, where, according to the study, “they are more powerful than THC itself.” What prompted the investigation was the continued arrival of users in hospitals and emergency rooms, presenting with symptoms of agitation, anxiety, panic, confusion, combativeness, paranoia, and suicidal ideation. Physical effects can includes elevated blood pressure and heart rate, nausea, hallucinations, and seizures.

One of the many problems for researchers and health officials is the lack of a widely available set of reference samples for precise identification of the welter of cannabis-like drugs now available. In addition, the synthetic cannabimimetics (SCs) are frequently mixed together, or mixed with other psychoactive compounds, making identification even more difficult. Add in the presence of masking agents, along with various herbal substances, and it becomes very difficult to find out which of the new drugs—none of which were intended for human use—are bad bets.

Availing themselves of toxicology tests, lab studies, and various surveys, the researchers, writing in Human Psychopharmacology’s Special Issue on Novel Psychoactive Substances, crunched the data related to a range of psychopathological issues reported with SCs—and the results were less than definitive. They found that many of the psychotic symptoms occurred in people who had been previously diagnosed with an existing form of mental disturbance, such as depression, ADHD, or PTSD. But they were able to determine that psychopathological syndromes were far less common with marijuana than with SCs. And those who experienced psychotic episodes on Spice-type drugs presented with “higher/more frequent levels of agitation and behavioral dyscontrol in comparison with those psychotic episodes described in marijuana misusers.”

In the end, the researchers can do no better than to conclude that “the exact risk of developing a psychosis following SC misuse cannot be calculated.” What would the researchers need to demonstrate solid causality between designer cannabis products and psychosis? More product consistency, for one thing, because “the polysubstance intake pattern typically described in SC misusers may act as a significant confounder” when it comes to developing toxicological screening tools. Perhaps most disheartening is “the large structural heterogeneity between the different SC compounds,” which limited the researchers’ ability to interpret the data.

This stuff matters, because the use of Spice-type drugs is reported to be increasing in the U.S. and Europe. Online suppliers are proliferating as well. And the drugs are particularly popular with teens and young adults. Young people are more likely to be drug-naïve or have limited exposure to strong drugs, and there is some evidence that children and adolescents are adversely affected by major exposure to drugs that interact with cannabinoid receptors in the brain. 




Related Posts Plugin for WordPress, Blogger...