Showing posts with label drinking. Show all posts
Showing posts with label drinking. Show all posts

Saturday, January 3, 2015

The Greeks and the Romans on Alcohol


Wine and Beer in Antiquity

"When men drink, then they are rich and successful and win lawsuits and are happy and help their friends. Quickly, bring me a beaker of wine, so that I may wet my mind and say something clever."
Aristophanes

"I like best the wine drunk at the cost of others."
Diogenes

"Persians are quite devoted to drinking wine….”                                                                   
Herodotus

“We should not drink like the Carmani… These people, namely, eager to prove their friendship in their drinking bouts, open the veins of the forehead, and mixing the blood which streams down in their wine, they imbibe it, in the belief that to taste each other’s blood is the highest proof of friendship.”
Poseidonius

“The wine urges me on, the bewitching wine, which sets even a wise man to singing and to laughing gently and rouses him up to dance and brings forth words which were better unspoken.”
Homer

“This is the great evil in wine, it first seizes the feet; it is a cunning wrestler.”
Plautus

 “Wine prepares the heart for love unless you take too much.”
Ovid

“Three bowls only do I mix for the temperate—one to health, which they empty first, the second to love and pleasure, the third to sleep. When this is drunk up wise guests go home. The fourth bowl is ours no longer, but belongs to violence; the fifth to uproar, the sixth to drunken reveal, the seventh to black eyes.”
Dionysus, by way of Eubulus

 “The peoples of the Mediterranean began to emerge from barbarism when they learnt to cultivate the olive and the vine.”                                             
Thucydides

 “…the Egyptians became fond of wine and bibulous; and so a way was found among them to help those who could not afford wine, namely, to drink that made from barley; they who took it were so elated that they sang, danced, and acted in every way like persons filled with wine.”
Athenaeus


Sources:

http://www.theworldwidewine.com/Wine_quotes/Greek_and_Roman_wine_quotes.php

http://www.academia.edu/1803087/

http://www.beekmanwine.com/factsquotes.htm


Graphics Credit: http://www.opwine.com/

Sunday, July 21, 2013

Fruit Fly Larvae Go Cold Turkey and Forget the Car Keys


Not a pretty sight.

Let’s start with the fruit fly, your basic Drosophila. A fruit fly, like a human, can become addicted to alcohol even at a very young age. The larval age. In other words, even as a maggot. And, just like humans, alcohol degrades a fruit fly maggot’s ability to learn. But adaption is an amazing thing, and drunken larvae eventually learn as well as their teetotaling cousins. That is, until the alcohol is taken away, in which case, the maggots become impaired learners once again. The larval nervous system goes haywire, and hyperexcitablity sets in. They can’t concentrate on their work. But one hour of “ethanol reinstatement” restores larval learning to normal levels.

It looks and sounds like withdrawal. Such effects in human alcoholics are often chalked up to state-dependent memory, but neurobiologists at the Waggoner Center for Alcohol and Addiction Research at the University of Texas, whose maggots these are, believe that state-dependent memory is not at work in the case of invertebrate ethanol dependence.

Brooks G. Robinson and associates fed the larvae a 5% ethanol supplement to their daily food. The maggots, incredibly enough, can reach blood-alcohol concentrations as high as 0.08, or roughly the legal limit for humans. If you blew a 0.08, the official chart says you would be suffering from impaired reasoning, disinhibition, and visual disturbances. For the maggots, no different. Larvae that fed on “ethanol food” for one hour learned poorly compared to straight maggots. The learning test, done before introducing alcohol into the picture, used a heat pulse to condition larvae away from an otherwise attractive odor. The reduced attraction to the odor is a form of associative learning.  Figuratively speaking, the drunken maggots kept burning themselves on the stove as they reached for the soup. They failed the field sobriety test.

But was it truly a case of impaired learning? Perhaps the drunken larvae had an impaired sense of smell. But the researchers could not document a reduced sense of odor based on responses with untrained animals. And both groups of maggots sensed heat equally, so the reduction in learning was not due to simple alcoholic anesthesia. Could the withdrawal response be due to the fact that alcohol is a calorie-rich food? To test that possibility, the researchers ran the experiment with sucrose instead of alcohol, and didn’t record any learning impairment in that case. As for state-dependent memory, the researchers assert in Current Biology that withdrawal effects “cannot be attributed to state-dependent learning, because the less than 20 minute training and testing assay for all treatment groups occurs on nonethanol plates.”

And finally, the investigators write, “the fact that both the withdrawal-induced learning deficit and the neuronal hyperexcitability responses are reversed by ethanol reinstatement suggests that they have related origins, and that withdrawal learning may suffer because the nervous system is overly excitable.”

So what have we learned? Well, alcohol dependence in humans is clearly associated with learning and memory deficits that can last for a year or more after quitting. Now that the researchers have demonstrated cognitive alcohol dependence in invertebrates—for the first time ever, they say—it may open the door to more sophisticated genetic analyses of alcoholism in Drosophila, for all the reasons that have drawn other biologists to the study of fruit flies over the years.

And there is more research to be done relative to the finding that neuronal hyper-excitability is linked in some way to the learning deficits caused by alcohol. A brief article by Stefan Pulver in the Journal of Experimental Biology  notes that the work of Robinson and colleagues “reinforces how eerily conserved ethanol’s physiological effects are across animal taxa. Alcohol addiction is truly the great leveller. It doesn’t matter whether you are man, mouse or maggot—over-consumption of alcohol will trigger very similar cellular and behavioral responses, with devastating consequences.” 

Robinson B., Khurana S., Kuperman A. & Atkinson N. (2012). Neural Adaptation Leads to Cognitive Ethanol Dependence, Current Biology, 22 (24) 2338-2341. DOI:

Sunday, January 21, 2007

Pass Me a Cold One


It’s a common phenemonon: A cold beer on a hot day gives you more of a buzz than a cold beer on a chilly day. Uncounted numbers of northern tourists have learn this lesson at their peril after a few tequilas in Cozumel. Fruit flies get drunk faster in hot weather, too. Their drink of choice is the decaying flesh of fruit, and fly populations in higher, cooler latitudes can really hold their rotten fruit, compared to their tropical cousins.

Higher temperature alters the detoxification pathways for alcohol and decreases the rigidity of cell membranes. Increased temperature also slows the activity of alcohol dehydrogenase, a primary enzyme involved in breaking down booze in the body. Alcohol is an amphiphilic molecule, meaning that cells treat it like water. So in hot weather, alcohol travels faster and lingers longer in the bodies of both humans and fruit flies.

Geneticist Kristi Montooth and colleagues at Brown University used fruit flies from an Australian site averaging 80 degrees F, and compared their intake of ethanol in solution with the intake of their more alcohol-tolerant cousins from a Tasmanian climate, where the temperature was 59 degrees F. The researchers traced the difference to regulatory proteins that help the flies cope better with alcohol in low temperatures; specifically, the expression of genes controlling fatty acid synthesis. The study was published in the Journal of Experimental Biology.

Sources:

--Montooth, K.L., et. al. “Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster. Journal of Experimental Biology. 209 3837-3850. 2006.

--Blackburn, Laura. “Hot Flies, Good Times.” ScienceNOW Daily News. September 15, 2006. http://sciencenow.sciencemag.org/

--Phillips, Kathryn.“Ethanol Tolerance in Temperate Drosophila.”Inside JEB.September 19 2006. http://jeb.biologists.org/cgi/content/full/209/19/iii
Related Posts Plugin for WordPress, Blogger...