Showing posts with label CBD. Show all posts
Showing posts with label CBD. Show all posts

Friday, February 5, 2016

Cannabis sativa vs. Cannabis indica: Science or Folklore?


Golden Goat or  Sour Diesel?

The bland assurances from medical marijuana dispensaries about the physical and psychological effects of the bewildering array of hybrid plant strains on offer is mostly bunk, claim a growing number of cannabis scientists.

Ethan Russo, a neurologist and pharmacology researcher, as well as the medical director of a biotechnology company, author of numerous books about herbal medicine, and a former faculty member at the University of Washington and the University of Montana, has something to say to marijuana connoisseurs: “There are biochemically distinct strains of Cannabis, but the sativa/indica distinction as commonly applied in the lay literature is total nonsense and an exercise in futility.”

How’s that again? The much-vaunted divide between the cerebral sativa strains, and the sedating, body-oriented effects of indica, are an integral part of marijuana lore and legend. Cannabis growers and biologists endlessly debate the hybridization of new strains. Extolling the virtues of a sativa plant crossed with a plant redolent of indica is a common sales pitch.

In an interview with Dr. Daniele Piomelli for the January 2016 issue of the journal Cannabis and Cannabinoid Research, Russo detailed his disagreement with the assumption that hard evidence exists for this distinction. Dr. Piomelli notes that “sativa is often described as being uplifting and energetic, whereas indica as being relaxing and calming.” Folklore, says Russo. Of course different strains have different effects. But in recent years, says Russo, almost all marijuana has been coming from high-THC strains, with a slight increase in CBD-predominant strains:

"The differences in observed effects in Cannabis are due to their terpenoid content, which is rarely assayed, let alone reported to potential consumers. The sedation of the so-called indica strains is falsely attributed to CBD content when, in fact, CBD is stimulating in low and moderate doses. Rather, sedation in most common Cannabis strains is attributable to their myrcene content, a monoterpene with a strongly sedative couch-lock effect that resembles a narcotic."

And, as for sativa strains: “A high limonene content (common to citrus peels) will be uplifting on mood, while the presence of the relatively rare terpene in Cannabis, alpha-pinene, can effectively reduce or eliminate the short-term memory impairment classically induced by THC.”

Well. I for one do not wish to be caught in the firing line between Dr. Russo and the legions of growers who will beg to differ with his conclusions. For years, it has been accepted wisdom that cannabis comes in two different forms, essentially considered two different species even though they readily interbreed. Even Jean-Baptiste Lamarck, the legendary naturalist of the 18th Century, agreed with the indica and sativa concepts.

But Russo will have none of it: “To paraphrase and expropriate an old Yiddish expression: 12 botanical taxonomists, 25 different opinions…. One cannot in any way currently guess the biochemical content of a given Cannabis plant based on its height, branching, or leaf morphology. The degree of interbreeding/hybridization is such that only a biochemical assay tells a potential consumer or scientist what is really in the plant.”

And finally: “I would strongly encourage the scientific community, the press, and the public to abandon the sativa/indica nomenclature and rather insist that accurate biochemical assays on cannabinoid and terpenoid profiles be available for cannabis in both the medical and recreational markets. Scientific accuracy and the public health demand no less than this.”

Russo’s interview is strong evidence of a viewpoint brought to public attention a few years ago by several others, including the controversial cannabis chemist Jeffrey Raber.

Raber told the L.A. Weekly in 2013 that there was no compelling scientific evidence for the claims routinely made by cannabis dispensaries about the effects of a given colorfully named strain of marijuana. “We took a popular [strain] name, Jack Herer, and found that most didn’t even look like each other. OG whatever, Kush whatever, and the marketing that goes along with it—it’s not really medically designed.”

And the difference between sativa and indica? The cerebral, bracing “mental” high vs. the sleepy, couch-lock “body” high? Forget it, said Raber. The two sub-species are distinguished by morphology only—different structures and appearance, but no hard and fast rules about the quality of the smoking experience. They look different, but that’s no guide to the distribution of THC, CBD, and numerous terpenes that determine the actual quality of the marijuana experience. Moreover, extensive crossbreeding by growers and dealers has helped to obliterate any consistent, meaningful distinctions between sativa and indica highs. (The so-called “skunk” varieties are simply high quality female plants that are prevented from going to seed, which dramatically pushes up the THC content. Almost all of the high-quality weed sold in the U.S., Canada, and the U.K. is skunkweed, so the definition is virtually useless.)

Sativa plants are characteristically tall and rangy, with long branches and long, thin leaves. They evolved, scientists believe, in humid jungle climates. Indica plants are shorter, more compact, and stubbier-looking, with shorter branches and fatter leaves designed for a hot, desert-like climate. It has been assumed that sativas originally came from India, and indicas from Afghanistan. However, indica is the term meant to indicate a plant from India, so right away we find that the situation is all muddled up: the plant from Afghanistan is known by the name of the plant from India. Blame this one on esteemed plant drug investigator Richard Evans Schultes, who apparently mislabeled the plants grown in Afghanistan as C. indica when he drew up the first cannabis taxonomy in the 1970s.

It gets worse. In 2014, at a meeting of the International Cannabis Research Society, research John McPartland with GW Pharmaceuticals announced  the results of his study of genetic markers on the three subspecies of cannabis: C. sativa, C. indica, and a third wild variety, known as C. ruderalis, with very little THC. Any of the three subspecies can be bred as hemp or marijuana, said McPartland. Cannabis sativa should really be known as Cannabis indica, being the Indian variety, while the formerly misnamed indica subspecies should now be called Cannabis afghanica. The name of C. sativa, the high-end connoisseur favorite, would now go to the lowly C. ruderalis, otherwise known as ditch weed, under his new classification scheme.

Quite a lot of changes to a decades-old nomenclature, but it means we are finally getting some serious genetic information about one of the most popular drugs in the world. As Jeremy Daw of The Leaf Online writes: “Starbucks, for example, sources coffee beans from farmers spread across four continents…. In an astonishing feat of global supply chain logistics, Starbucks can now claim to have the ability to trace 94% of its coffee beans all the way back to the exact farm where they were produced.” The cannabis industry, he concludes, still has “a lot of growing up to do.”

Krymon deCesare, chief research director at Steep Hill Halent Lab in Oakland, California, a company developing more sophisticated tests for identifying the various compounds found in marijuana, told AlterNet  that “sativa and indica are only really valid for describing the physical characteristics of the cannabis strain in a given environment. They are not nearly as reliable as terms for making assumptions about energy versus couch lock.” To the extent that there is a grain of truth in the basic division between the mind high of sativa and the body high of indica, as traditionally classified, deCesare believes the culprit is myrcene. Based on the analysis of more than 100,000 samples, deCesare says that his team found “consistently elevated levels of the terpenoid myrcene in C. indica as compared to C. sativa. Myrcene is the major ingredient responsible for ‘flipping’ the normal energetic effect of THC….”

Ethan Russo invokes his notion of the “entourage effect,” in which the distinctive highs normally associated with indica and sativa are in fact the result of a complex combination of many different cannabinoids and terpenes working in harmony. Teasing that apart in the lab is not a cheap or easy affair. If you don’t know your terpene levels, says Russo, than you can’t compute your relative chances of full couch-lock. And even if terpene levels are known, the same pot plant, when smoked, can still cause one person to become energized and talkative, while another person may just fall asleep. Same chemicals, different metabolisms. One person’s happy, giggly high is another person’s paranoid bad trip.

The result of this recent research is to bolster the general suspicion about medical marijuana dispensaries: The names of various marijuana varieties are not only stupid and immature, but also completely misleading and unhelpful. Coherent labeling will require much more than listing relative THC percentages. We’ve only just begun.

Tuesday, July 21, 2015

Marijuana Deconstructed


What's In Your Weed?

Australia has one of the highest rates of marijuana use in the world, but until recently, nobody could say for certain what, exactly, Australians were smoking. Researchers at the University of Sydney and the University of New South Wales recently analyzed hundreds of cannabis samples seized by Australian police, and put together comprehensive data on street-level marijuana potency across the country. They sampled police seizures and plants from crop eradication operations. The mean THC content of the samples was 14.88%, while absolute levels varied from less than 1% THC to almost 40%.  Writing in PLoS one, Wendy Swift and colleagues found that roughly ¾ of the samples contained at least 10% total THC. Half the samples contained levels of 15% or higher—“the level recommended by the Garretsen Commission as warranting classification of cannabis as a ‘hard’ drug in the Netherlands.”

In the U.S., recent studies have shown that THC levels in cannabis from 1993 averaged 3.4%, and then climbed to THC levels in 2008 of almost 9%. By 2015, marijuana with THC levels of 20% were for sale in Colorado and Washington.

CBD, or cannabidiol, another constituent of cannabis, has garnered considerable attention in the research community as well as the medical marijuana constituency due to its anti-emetic properties. Like many other cannabinoids, CBD is non-psychoactive, and acts as a muscle relaxant as well. CBD levels in the U.S. have remained consistently low over the past 20 years, at 0.3-0.4%. In the Australian study, about 90% of cannabis samples contained less than 0.1% total CBD, based on chromatographic analysis, although some of the samples had levels as high as 6%.

The Australian samples also showed relatively high amounts of CBG, another common cannabinoid. CBG, known as cannabigerol, has been investigated for its pharmacological properties by biotech labs. It is non-psychoactive but useful for inducing sleep and lowering intra-ocular pressure in cases of glaucoma.

CBC, yet another cannabinoid, also acts as a sedative, and is reported to relieve pain, while also moderating the effects of THC. The Australian investigators believe that, as with CBD, “the trend for maximizing THC production may have led to marginalization of CBC as historically, CBC has sometimes been reported to be the second or third most abundant cannabinoid.”

Is today’s potent, very high-THC marijuana a different drug entirely, compared to the marijuana consumed up until the 21st Century? And does super-grass have an adverse effect on the mental health of users? The most obvious answer is, probably not. Recent attempts to link strong pot to the emergence of psychosis have not been definitive, or even terribly convincing. (However, the evidence for adverse cognitive effects in smokers who start young is more convincing).

It’s not terribly difficult to track how ditch weed evolved into sinsemilla. It is the historical result of several trends: 1) Selective breeding of cannabis strains with high THC/low CBD profiles, 2) near-universal preference for female plants (sinsemilla), 3) the rise of controlled-environment indoor cultivation, and 4) global availability of high-end hybrid seeds for commercial growing operations. And in the Australian sample, much of the marijuana came from areas like Byron Bay, Lismore, and Tweed Heads, where the concentration of specialist cultivators is similar to that of Humboldt County, California.

The investigators admit that “there is little research systematically addressing the public health impacts of use of different strengths and types of cannabis,” such as increases in cannabis addiction and mental health problems. The strongest evidence consistent with lab research is that “CBD may prevent or inhibit the psychotogenic and memory-impairing effects of THC. While the evidence for the ameliorating effects of CBD is not universal, it is thought that consumption of high THC/low CBD cannabis may predispose users towards adverse psychiatric effects….”

The THC rates in Australia are in line with or slightly higher than average values in several other countries. Can an increase in THC potency and corresponding reduction in other key cannabinoids be the reason for a concomitant increase in users seeking treatment for marijuana dependency? Not necessarily, say the investigators. Drug courts, coupled with greater treatment opportunities, might account for the rise. And schizophrenia? “Modelling research does not indicate increases in levels of schizophrenia commensurate with increases in cannabis use.”

One significant problem with surveys of this nature is the matter of determining marijuana’s effective potency—the amount of THC actually ingested by smokers. This may vary considerably, depending upon such factors as “natural variations in the cannabinoid content of plants, the part of the plant consumed, route of administration, and user titration of dose to compensate for differing levels of THC in different smoked material.”

Wendy Swift and her coworkers call for more research on cannabis users’ preferences, “which might shed light on whether cannabis containing a more balanced mix of THC and CBD would have value in the market, as well as potentially conferring reduced risks to mental wellbeing.”


Swift W., Wong A., Li K.M., Arnold J.C. & McGregor I.S. (2013). Analysis of Cannabis Seizures in NSW, Australia: Cannabis Potency and Cannabinoid Profile., PloS one, PMID: 23894589

(First published at Addiction Inbox Sept. 3 2013)

Graphics Credit: https://budgenius.com/marijuana-testing.html

Wednesday, August 20, 2014

The Chemistry of Modern Marijuana


Is low-grade pot better for you than sinsemilla?

First published September 3, 2013.

Australia has one of the highest rates of marijuana use in the world, but until recently, nobody could say for certain what, exactly, Australians were smoking. Researchers at the University of Sydney and the University of New South Wales  analyzed hundreds of cannabis samples seized by Australian police, and put together comprehensive data on street-level marijuana potency across the country. They sampled police seizures and plants from crop eradication operations. The mean THC content of the samples was 14.88%, while absolute levels varied from less than 1% THC to almost 40%.  Writing in PLoS ONE, Wendy Swift and colleagues found that roughly ¾ of the samples contained at least 10% total THC. Half the samples contained levels of 15% or higher—“the level recommended by the Garretsen Commission as warranting classification of cannabis as a ‘hard’ drug in the Netherlands.”

In the U.S., recent studies have shown that THC levels in cannabis from 1993 averaged 3.4%, and then soared to THC levels in 2008 of almost 9%. THC loads more than doubled in 15 years, but that is still a far cry from news reports erroneously referring to organic THC increases of 10 times or more.

CBD, or cannabidiol, another constituent of cannabis, has garnered considerable attention in the research community as well as the medical marijuana constituency due to its anti-emetic properties. Like many other cannabinoids, CBD is non-psychoactive, and acts as a muscle relaxant as well. CBD levels in the U.S. have remained consistently low over the past 20 years, at 0.3-0.4%. In the Australian study, about 90% of cannabis samples contained less than 0.1% total CBD, based on chromatographic analysis, although some of the samples had levels as high as 6%.

The Australian samples also showed relatively high amounts of CBG, another common cannabinoid. CBG, known as cannabigerol, has been investigated for its pharmacological properties by biotech labs. It is non-psychoactive but useful for inducing sleep and lowering intra-ocular pressure in cases of glaucoma.

CBC, yet another cannabinoid, also acts as a sedative, and is reported to relieve pain, while also moderating the effects of THC. The Australian investigators believe that, as with CBD, “the trend for maximizing THC production may have led to marginalization of CBC as historically, CBC has sometimes been reported to be the second or third most abundant cannabinoid.”

Is today’s potent, very high-THC marijuana a different drug entirely, compared to the marijuana consumed up until the 21st Century? And does super-grass have an adverse effect on the mental health of users? The most obvious answer is, probably not. Recent attempts to link strong pot to the emergence of psychosis have not been definitive, or even terribly convincing. (However, the evidence for adverse cognitive effects in smokers who start young is more convincing).

It’s not terribly difficult to track how ordinary marijuana evolved into sinsemilla. Think Luther Burbank and global chemistry geeks. It is the historical result of several trends: 1) Selective breeding of cannabis strains with high THC/low CBD profiles, 2) near-universal preference for female plants (sinsemilla), 3) the rise of controlled-environment indoor cultivation, and 4) global availability of high-end hybrid seeds for commercial growing operations. And in the Australian sample, much of the marijuana came from areas like Byron Bay, Lismore, and Tweed Heads, where the concentration of specialist cultivators is similar to that of Humboldt County, California.

The investigators admit that “there is little research systematically addressing the public health impacts of use of different strengths and types of cannabis,” such as increases in cannabis addiction and mental health problems. The strongest evidence consistent with lab research is that “CBD may prevent or inhibit the psychotogenic and memory-impairing effects of THC. While the evidence for the ameliorating effects of CBD is not universal, it is thought that consumption of high THC/low CBD cannabis may predispose users towards adverse psychiatric effects….”

The THC rates in Australia are in line with or slightly higher than average values in several other countries. Can an increase in THC potency and corresponding reduction in other key cannabinoids be the reason for a concomitant increase in users seeking treatment for marijuana dependency? Not necessarily, say the investigators. Drug courts, coupled with greater treatment opportunities, might account for the rise. And schizophrenia? “Modelling research does not indicate increases in levels of schizophrenia commensurate with increases in cannabis use.”

One significant problem with surveys of this nature is the matter of determining marijuana’s effective potency—the amount of THC actually ingested by smokers. This may vary considerably, depending upon such factors as “natural variations in the cannabinoid content of plants, the part of the plant consumed, route of administration, and user titration of dose to compensate for differing levels of THC in different smoked material.”

Wendy Swift and her coworkers call for more research on cannabis users’ preferences, “which might shed light on whether cannabis containing a more balanced mix of THC and CBD would have value in the market, as well as potentially conferring reduced risks to mental wellbeing.”

Graphics Credit: http://www.ironlabsllc.co/view/learn.php

Swift W., Wong A., Li K.M., Arnold J.C. & McGregor I.S. (2013). Analysis of Cannabis Seizures in NSW, Australia: Cannabis Potency and Cannabinoid Profile., PloS one, PMID: 23894589

Tuesday, September 3, 2013

A Chemical Peek at Modern Marijuana


Researchers ponder whether ditch weed is better for you than sinsemilla.

Australia has one of the highest rates of marijuana use in the world, but until recently, nobody could say for certain what, exactly, Australians were smoking. Researchers at the University of Sydney and the University of New South Wales recently analyzed hundreds of cannabis samples seized by Australian police, and put together comprehensive data on street-level marijuana potency across the country. They sampled police seizures and plants from crop eradication operations. The mean THC content of the samples was 14.88%, while absolute levels varied from less than 1% THC to almost 40%.  Writing in PLoS one, Wendy Swift and colleagues found that roughly ¾ of the samples contained at least 10% total THC. Half the samples contained levels of 15% or higher—“the level recommended by the Garretsen Commission as warranting classification of cannabis as a ‘hard’ drug in the Netherlands.”

In the U.S., recent studies have shown that THC levels in cannabis from 1993 averaged 3.4%, and then soared to THC levels in 2008 of almost 9%. THC loads more than doubled in 15 years, but that is still a far cry from news reports erroneously referring to organic THC increases of 10 times or more.

CBD, or cannabidiol, another constituent of cannabis, has garnered considerable attention in the research community as well as the medical marijuana constituency due to its anti-emetic properties. Like many other cannabinoids, CBD is non-psychoactive, and acts as a muscle relaxant as well. CBD levels in the U.S. have remained consistently low over the past 20 years, at 0.3-0.4%. In the Australian study, about 90% of cannabis samples contained less than 0.1% total CBD, based on chromatographic analysis, although some of the samples had levels as high as 6%.

The Australian samples also showed relatively high amounts of CBG, another common cannabinoid. CBG, known as cannabigerol, has been investigated for its pharmacological properties by biotech labs. It is non-psychoactive but useful for inducing sleep and lowering intra-ocular pressure in cases of glaucoma.

CBC, yet another cannabinoid, also acts as a sedative, and is reported to relieve pain, while also moderating the effects of THC. The Australian investigators believe that, as with CBD, “the trend for maximizing THC production may have led to marginalization of CBC as historically, CBC has sometimes been reported to be the second or third most abundant cannabinoid.”

Is today’s potent, very high-THC marijuana a different drug entirely, compared to the marijuana consumed up until the 21st Century? And does super-grass have an adverse effect on the mental health of users? The most obvious answer is, probably not. Recent attempts to link strong pot to the emergence of psychosis have not been definitive, or even terribly convincing. (However, the evidence for adverse cognitive effects in smokers who start young is more convincing).

It’s not terribly difficult to track how ditch weed evolved into sinsemilla. It is the historical result of several trends: 1) Selective breeding of cannabis strains with high THC/low CBD profiles, 2) near-universal preference for female plants (sinsemilla), 3) the rise of controlled-environment indoor cultivation, and 4) global availability of high-end hybrid seeds for commercial growing operations. And in the Australian sample, much of the marijuana came from areas like Byron Bay, Lismore, and Tweed Heads, where the concentration of specialist cultivators is similar to that of Humboldt County, California.

The investigators admit that “there is little research systematically addressing the public health impacts of use of different strengths and types of cannabis,” such as increases in cannabis addiction and mental health problems. The strongest evidence consistent with lab research is that “CBD may prevent or inhibit the psychotogenic and memory-impairing effects of THC. While the evidence for the ameliorating effects of CBD is not universal, it is thought that consumption of high THC/low CBD cannabis may predispose users towards adverse psychiatric effects….”

The THC rates in Australia are in line with or slightly higher than average values in several other countries. Can an increase in THC potency and corresponding reduction in other key cannabinoids be the reason for a concomitant increase in users seeking treatment for marijuana dependency? Not necessarily, say the investigators. Drug courts, coupled with greater treatment opportunities, might account for the rise. And schizophrenia? “Modelling research does not indicate increases in levels of schizophrenia commensurate with increases in cannabis use.”

One significant problem with surveys of this nature is the matter of determining marijuana’s effective potency—the amount of THC actually ingested by smokers. This may vary considerably, depending upon such factors as “natural variations in the cannabinoid content of plants, the part of the plant consumed, route of administration, and user titration of dose to compensate for differing levels of THC in different smoked material.”

Wendy Swift and her coworkers call for more research on cannabis users’ preferences, “which might shed light on whether cannabis containing a more balanced mix of THC and CBD would have value in the market, as well as potentially conferring reduced risks to mental wellbeing.”

Swift W., Wong A., Li K.M., Arnold J.C. & McGregor I.S. (2013). Analysis of Cannabis Seizures in NSW, Australia: Cannabis Potency and Cannabinoid Profile., PloS one, PMID:

Graphics Credit: http://420tribune.com

Sunday, October 23, 2011

Decoding Dope


Why marijuana gets you high, and hemp doesn’t.

Cannabis sativa comes in two distinct flavors—smokeable weed, and headache-inducing hemp. The difference between hemp and smokeable marijuana is simple: Hemp, used for fiber and seed, contains only a tiny amount of THC, the primary active ingredient in the kind of cannabis that gets you high. I am old enough to recall the sad saga of California hippies driving through my natal state of Iowa, and filling their trunks with “ditch weed”—wild hemp that grows commonly along Iowa rural fencerows, and while it cannot get you high, it could, back then, get you arrested.

But the California hippies who ran afoul of the law in Iowa were not so stupid as it might seem. This post was chosen as an Editor's Selection for ResearchBlogging.orgEven a marijuana connoisseur can have a hard time telling the difference between strong sinsemilla and wild hemp. Both varieties look similar, have similar growth patterns and flowering schedules, and a fresh bud of ditch hemp can look and smell enticingly like the real thing. Even the trichomes—the thousands of sticky, microscopic stalks that grow on the female flowers, each containing a bead of resin, like a crystal golf ball on a tee, containing mostly THC, in the case of pot, and mostly CBD, in the case of hemp—are also similar in appearance and growth behavior.

A study by a group of Canadian researchers, just published in Genome Biology, lays out the draft genome of marijuana, containing all of the plant’s hereditary information as encoded in DNA and RNA.In their article, Timothy Hughes, Jonathan Page and co-workers reported “a draft genome and transcriptome sequence of C. sativa Purple Kush.” (The genome and transcriptome can be browsed or downloaded at The Cannabis Genome Browser.) More than 20 plant genomes have now been sequenced, including corn and rice, but Cannabis sativa marks the first genomic sequencing of a traditional medicinal plant.

So how does it happen that one version of cannabis comes power packed, while the other version shoots blanks, so to speak? The researchers began with the modern facts of the matter: The THC content of medical and recreational marijuana is “remarkably high.” Research shows that median levels of THC in dried female flowers of Purple Kush (the strain used in the study) and other high-end variants now approach 11%, with some strains achieving a stratospheric 23% THC content by dry weight. Why can’t breeders pull any buzz out of ditch weed? How did cannabis split into two distinct subtypes? In an accompanying editorial entitled “how hemp got high,” Naomi Attar calls Cannabis sativa “a plant with a ‘split personality,' whose Dr. Jekyll, hemp, is an innocent source of textiles, but whose Mr. Hyde, marijuana, is chiefly used to alter the mind.” In brief, what are the biological reasons for the psychoactive differences between marijuana and hemp?

Co-lead author Jon Page, a plant biologist at the University of Saskatchewan, along with Tim Hughes of the Department of Molecular Genetics at the University of Toronto, compared the genomic information of Purple Kush, a medical marijuana favorite, with a Finnish strain of hemp called Finola, which was developed for oil seed production and contains less than 1% THC content. That is not enough THC to be mind-altering in any way. Instead, what Finola has in abundance is cannabidiol, or CBD, the other major ingredient in cannabis.

CBD isn’t considered psychoactive, but it does produce a host of pharmacological activity in the body. CBD shows less affinity for the two main types of cannabis receptors, CB1 and CB2, meaning that it attaches to receptors more weakly, and activates them less robustly, than THC.  The euphoric effects of marijuana are generally attributed to THC content, not CBD content. In fact, there appears to be an inverse ratio at work. According to a paper in Neuropsychopharmacology, "Delta-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBD's ability to block the psychotogenic effects of delta-9-THC."

The kind of cannabis people want to buy has a high THC/low CBD profile, while the hemp chemotype is just the reverse—low THC/high CBD. While the medical marijuana movement has concentrated on Purple Kush and other high-THC breeds, medical researchers have often tilted towards the CBD-heavy variants, since CBD seems to be directly involved with some of the purported medicinal effects of the plant. So, CBD specifically does not produce the usual marijuana high with accompanying euphoria and forgetfulness and munchies. What other researchers have discovered is that pot smokers who suffer the most memory impairment are the ones smoking cannabis low in cannabidiol, while people smoking cannabis high in cannabidiol—cheap, seedy, brown weed—show almost no memory impairment at all. THC content didn't seem to matter. It was the percentage of CBD that controlled the degree of memory impairment, the authors of earlier studies concluded.

 The researchers found evidence in Purple Kush for “upregulation of cannabinoid ‘pathway genes’ and the exclusive presence of functional THCA synthase.” That means the reason hemp doesn’t get you high is because it is lacking the crucial enzyme—THCA synthase—that limits production of CBD and allows the production of THC to go wild. In contrast, cannabis strains producing high levels of THC—the Kushes and Hazes and White Widows and other seriously spendy variants—do have high levels of the enzyme that limits the production of CBD. Purple Kush gets you high because it has a built-in chemical brake on the production of CBD. Hemp doesn’t.

In a press release from the University of Saskatchewan, the researchers explain how they think this divergence came about: “Over thousands of years of cultivation, hemp farmers selectively bred Cannabis sativa into two distinct strains—one for fiber and seed, and one for medicine.” This intensive selective breeding resulted in changes in the essential enzyme for THC production, which “is turned on in marijuana, but switched of in hemp,” as Page put it. Furthermore, says co-leader Tim Hughes of the Department of Molecular Genetics at the University of Toronto, an additional enzyme responsible for removing materials required for THC production was “highly expressed in the hemp strain, but not the Purple Kush.” The loss of this enzyme in Purple Kush eliminated a substance “which would otherwise compete for the metabolites used as starting material” in THC production.

Without knowing the mechanics of it, underground growers and breeders have been steadily maximizing the cultivation of strains of cannabis high in THCA synthase, the result of which is a molecular blocking maneuver that maximizes THC production. This is great for getting high, but may not be the optimal breeding strategy for producing plants with medicinal properties.  Raphael Mechoulam, the scientist who first isolated and synthesized THC, has referred to plant-derived cannabinoids as a “neglected pharmacological treasure trove.”  The authors of this study agree, and have already identified some candidate genes that encode for a variety of cannabinoids with “interesting biological activities.” Such knowledge, they say, will “facilitate breeding of cannabis for medical and pharmaceutical applications.”

But cannabis of this kind may turn out to be low-THC weed. And that may be a good thing, some researchers believe. Marijuana expert Lester Grinspoon told Nature News: "Cannabis with high cannabidiol levels will make a more appealing option for anti-pain, anti-anxiety and anti-spasm treatments, because they can be delivered without causing disconcerting euphoria." (We’ll leave definitional issues about the effects of euphoria for another post.)

Finally, the authors strongly suggest that if it were not for “legal restrictions in most jurisdictions on growing cannabis, even for research purposes,” we would have known all of this stuff years ago, and would have been well on our way to developing “finer tailoring of cannabinoid content in new strains of marijuana,” as Nature News Blog describes it.

van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, & Page JE (2011). The draft genome and transcriptome of Cannabis sativa. Genome biology, 12 (10) PMID: 22014239
Photo Credit:http://www.medicinalgenomics.com/

Sunday, October 3, 2010

Marijuana and Memory


Do certain strains make you more forgetful?

Cannabis snobs have been known to argue endlessly about the quality of the highs produced by their favorite varietals: Northern Lights, Hawaiian Haze, White Widow, etc. Among dedicated potheads, debates about the effects of specific cannabis strains are often overheated, and, ultimately, kind of boring. It's a bit like listening to a discussion of whether the wine in question evinces a woody aftertaste or is, instead, redolent of elderberries. For most people, the true essence of wine drinking is pretty straightforward: a drug buzz, produced by a 12 to 15 % concentration of ethyl alcohol derived from grapes, which can be had in a spectrum of varietal flavors.

However, there is no doubting that, unlike the case of wine, different strains of marijuana can have markedly different psychoactive effects. With weed, it's not just a matter of taste.

Over the past couple of years, the cannabis debate has taken a nasty turn, after British scientists published several controversial studies suggesting that high-THC "skunk" cannabis was responsible for increased mental problems among young people--including an increased risk of developing the symptoms of schizophrenia. British drug policy makers have continued to lead the charge on this, with mixed results. See my earlier post.

Recently, a study published in the British Journal Of Psychiatry concluded that marijuanaThis post was chosen as an Editor's Selection for ResearchBlogging.org
high in THC--including so-called "skunk" cannabis--caused markedly more memory impairment than varieties of marijuana containing less THC.

In an article at Nature News, Arran Frood spelled out the details of the study:

"Curran and her colleagues traveled to the homes of 134 volunteers, where the subjects got high on their own supply before completing a battery of psychological tests designed to measure anxiety, memory recall and other factors such as verbal fluency when both sober and stoned. The researchers then took a portion of the stash back to the laboratory to test how much THC and cannabidiol it contained....  Analysis showed that participants who had smoked cannabis low in cannabidiol were significantly worse at recalling text than they were when not intoxicated. Those who smoked cannabis high in cannabidiol showed no such impairment."

The two main ingredients in cannabis are THC and cannabidiol (CBD). CBD shows less affinity for the two main types of cannabis receptors, CB1 and CB2, meaning that it attaches to receptors more weakly, and activates them less robustly, than THC.  The euphoric effects of marijuana are generally attributed to THC content, not CBD content. In fact, there appears to be an inverse ratio at work. According to a paper in Neuropsychopharmacology, "Delta-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBD's ability to block the psychotogenic effects of delta-9-THC."

So, CBD specifically does not produce the usual marijuana high with accompanying euphoria and forgetfulness and munchies. What the researchers found was that pot smokers suffering memory impairment and those showing normal memory "did not differ in the THC content of the cannabis they smoked. Unlike the marked impairment in prose recall of individuals who smoked cannabis low in cannabidiol, participants smoking cannabis high in cannabidiol showed no memory impairment."

As far as memory goes, THC content didn't seem to matter. It was the percentage of CBD that controlled the degree of memory impairment, the authors concluded. "The antagonistic effects of cannabidiol at the CB1 receptor are probably responsible for its profile in smoked cannabis, attenuating the memory-impairing effects of THC. In terms of harm reduction, users should be made aware of the higher risk of memory impairment associated with smoking low-cannabidiol strains of cannabis like 'skunk' and encouraged to use strains containing higher levels of cannabidiol."

The idea that cannabidiol may protect against THC-induced memory loss is still quite speculative.  Other research has suggested that a paucity of CB1 receptors may be protective against memory impairment. Marijuana growers select for high-THC strains, not high-CBD strains, and thus there is little data available about the CBD levels of most marijuana.

An earlier study in Behavioural Pharmacology by Aaron Ilan and others at the San Francisco Brain Research Institute did not find any connection between memory and CBD content. However, Ilan speculated in the Nature News article that the difference might have been due to methodology: In Britain, the subjects were studied using marijuana of their own choosing.  In the U.S., National Institute of Health research policy has decreed that marijuana for official research must be supplied by the National Institute on Drug Abuse (NIDA). And if there is one thing many researchers seem to agree on, it is that NIDA weed "is notorious for being low in THC and poor quality."

But CBD still does something, and that something just might be pain relief.  Lester Grinspoon, a long-time marijuana researcher at Harvard Medical School, thinks that if the study proves out, it could have an important impact on the medical use of marijuana. Also quoted in Nature News, Grinspoon said: "Cannabis with high cannabidiol levels will make a more appealing option for anti-pain, anti-anxiety and anti-spasm treatments, because they can be delivered without causing disconcerting euphoria."


Morgan, C., Schafer, G., Freeman, T., & Curran, H. (2010). Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: naturalistic study The British Journal of Psychiatry, 197 (4), 285-290 DOI: 10.1192/bjp.bp.110.077503

Graphics Credit: http://sites.google.com

Related Posts Plugin for WordPress, Blogger...