Showing posts with label MDPV. Show all posts
Showing posts with label MDPV. Show all posts

Sunday, July 14, 2013

MDPV Turns Lab Rats Into "Window Lickers"


Popular bath salt drug shown to be highly addictive.

Researchers at the Scripps Research Institute (TSRI) in La Jolla, California, appear to have hammered the last nail into the coffin for the common “bath salt” drug known as MDPV. We can now say with a high degree of certainty that, based on animal models, we know that 3,4-methylenedioxypyrovalerone is addictive—perhaps more strongly addictive than methamphetamine, although such comparisons are always perilous. However, principal investigator Michael A. Taffe, an associate professor at TSRI, said in a prepared release that the research group “observed that rats will press a lever more often to get a single infusion of MPDV than they will for meth, across a fairly wide dose range.”

Like methamphetamine, MDPV works by stalling the uptake of dopamine, and it also has effects on noradrenaline and serotonin.  As cathinone derivatives, MPDV and mephedrone are related to the stimulant drug khat, which is used like cocaine in northeastern Africa.  In earlier research at Scripps under Dr. Taffe, investigators found that lab rats would intravenously self-administer mephedrone and behave in a manner similar to the effects produced when the rats were on methamphetamine. In a paper  for Drug and Alcohol Dependence, the Taffe Lab concluded that “the potential for compulsive use of mephedrone in humans is likely quite high, particularly in comparison with MDMA.”

Now the researchers have zeroed in on the effects of the dirty pharmacology represented by MDPV, the other primary ingredient in many bath salt mixtures. In a new study by Michael Taffe, Tobin J. Dickerson, Shawn M. Aarde, and others, to be published in the August issue of Neuropharmacology, the investigators found that MDPV was a more potent attraction than meth for rats allowed to self-administer the drugs. Very little lab data exists for MDPV, and this study was among the first to directly compare the effect of MDPV to methamphetamine in an animal experiment.

It took some time to tease out the behavioral clues—the cognitive, thermoregulatory, and potentially addictive effects of the drug—but MDPV’s strong affinities with speed can no longer be ignored. The researchers saw the same types of repetitive activities seen in animals on meth, such as excessive grooming, tooth grinding, and skin picking.  Lead author Shawn Aarde said in a prepared statement that “one stereotyped behavior that we often observed was a rat repeatedly licking the clear plastic walls of its operant chamber—a behavior that was sometimes uninterruptable.”

 MDPV, in the jargon of such experiments, had “greater reward value” than methamphetamine. Which is saying something, given the well-publicized addictive threat of speed. When the group boosted the number of lever presses needed for another infusion of MDPV or meth, “we observed that rats emitted about 60 presses on average for a dose of meth but up to about 600 for MDPV—some rats would even emit 3,000 lever presses for a single hit of MDPV,” said Aarde in a press release. “If you consider these lever presses a measure of how much a rat will work to get a drug infusion, then these rats worked more than 10 times harder to get MDPV.”

Excuse me, did he say as many as three thousand bar presses for another bump of intravenous MDPV? He did. Overall, the rats self-administered more MDPV than methamphetamine. In the paper itself, the authors write that “compared with meth, the effect of MDPV on drug-reinforced behavior was of greater potency (more responding under lowest dose under fixed-ratio schedule) and greater efficacy (more responding under optimal dose under a progressive ratio schedule)…”

The conclusion? MDPV’s “abuse liability” may be greater than that of standard methamphetamine. Which is another excellent piece of evidence for approaching the world of new synthetic psychoactives with great caution.

Aarde S.M., Huang P.K., Creehan K.M., Dickerson T.J. & Taffe M.A. (2013). The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: Self-administration and locomotor activity in rats, Neuropharmacology, 71  130-140. DOI:

Saturday, July 6, 2013

Popular Synthetics: The Class of 2013


Navigating the new alphabet of intoxication.

You don’t have to be a molecular chemist to know which of today’s recreational drugs are safe. Wait, I take that back. You DO have to be a molecular chemist to navigate today’s synthetic drug market with anything like a modest degree of safety.

It’s hard not to get nostalgic: Back in the day, you had your pot, you had your acid, your coke, your speed, and your heroin. And that, with the exception of a few freak outriders like PCP, was about that. Baby boomers of today, already losing touch with leading-edge music—Macklemore? Tame Impala?—can now consider themselves officially out of touch when it comes to illegal drugs.

That is, unless they are familiar with psychoactive chemicals beyond mere methamphetamine “bath salt” knockoffs like mephedrone, and cannabis “Spice” look-alikes such as JWH-018. We’re talking about drugs like Bromo-DragonFly, Benzo Fury, and 2C-B.  As Vanessa Grigoriadis writes in New York Magazine: “These drug users imagine themselves as amateur chemists, proto-Walter Whites, sampling and resynthesizing drugs to achieve exactly the state of consciousness they find most pleasurable. And there are no end of drugs to play with.”

A big piece of the synthetic drugs movement can be traced to the work of the legendary Alexander Shulgin, a Harvard grad who worked for Dow chemical, and who invented more than 100 entirely novel hallucinogenic compounds over the years. Other than the hallucinogens investigated by Shulgin and his coterie of personal friends, who were willing to take new hallucinogens and report back, none of the drugs on this list were meant for, or tested on, human beings.

Many of them are not, technically, new. Nonetheless, writes Grigoriadis, "almost every drug, from pot to GHB to morphine, has been messed with, as chemists find that removing a methoxy group or adding a benzene ring makes a new drug with different properties: body-grooving with a side helping of visuals, euphoric or speedy, long or short, or administering just the right dose of primal fear. Formerly known as “designer drugs,” they have morphed into “synthetic highs.” The tricky precursor chemical problem has become much easier to solve in the present moment, when any budding entrepreneur can send the official chemical designation of a drug, called its CAS number, to any of dozens of manufacturers in China, who will provide them with whatever weird “research” drug they need.


Herewith, a sampling of a few popular drugs of the day:

  • 2C Series
2C-P is an Alexander Shulgin favorite, a hallucinogenic phenethylamine known officially as 2-(2,5-dmethoxy-4-propylphenyl)ethanamine. But your mileage may vary. Phenethylamine is similar in action to amphetamine and acts on dopamine and norepinephrine receptors. Nonetheless, 2C drugs have strong psychedelic effects as well. Other phenethylamine drugs include ephedrine, mescaline, bupropion (Wellbutrin), and venlafaxine (Effexor). There are several drugs in the 2C family, including 2C-B and 2C-I, but 2C-P is considered the strongest in the class, an intense psychedelic with visualizations lasting for up to 16 hours. 2C-B, or 4-bromo-2,5-dimethoxyphenethylamine is another popular hallucinogen, described by some as a cross between LSD and MDMA (Ecstasy)—less “psychedelic” than LSD, with stronger “body effects.” Drugs in this family are generally recognized as non-addictive, but large doses can cause sweating and chills, stomach discomfort, and paranoia or panic. A close cousin, the DOB drugs (2,5-Dimethoxy-4-Bromoamphetamine) are a related family of hallucinogens.

  • Bromo-Dragonfly
This synthetic, sold as 3C-Bromo-Dragonfly and DOB-Dragonfly, is a very strong serotonin agonist, and has effects consistent with serotonin 5-HT hallucinogens such as LSD. This one came out of Purdue Pharmaceuticals as a compound for use in serotonin research, and belongs to a class of drugs called benzodifurans, which are related to the phenethylamines. It has been implicated in several deaths since it was first reported in 2007, says drug site Erowid. Positive effects listed at EROWID  included mood lift, visual changes, and increased energy. Negative effects include short-term memory loss, muscle tension, and “unknown risks due to research chemical status.” This is not a drug to take lightly. Dr. Jeff Lapoint, an attending physician at San Diego’s Kaiser Permanente and an expert in toxicology, recently told Tony O'Neill at The Fix that “Bromo-Dragonfly is probably the scariest thing on the list.”

  • NBOMe Series
This group of synthetics, now available to underground buyers, is a perfect example of a complicated new series of psychoactive drugs with little or no track record of human use before they appeared online in 2010. When coherently labeled at all, they are sold as 2C-C-NBOMe, 2c-I-NBOMe, 25C-NBOMe, and mescaline-NBOMe, among other designations. The NBOMe series have attributes of both hallucinogens and amphetamines, and are active at very low doses, like LSD. There isn’t even much in the way of animal research on this collection. As with many of these synthetics, reports linking 2C-C-NBOMe to the deaths of young users have surfaced over the past two years.  While hallucinogens always present this Janus-faced aspect, this roll-the-dice-for-a-good-trip-or-a-bad-trip vibe, the ability to actually KNOW what you are taking—always a problem of major significance in the underground drug world—becomes even more acute in the case of research chemicals not intended for human use, let alone Prime Time.  If all goes well, users get a mood lift, visuals, and euphoria. At high doses, the effects can include nausea, paranoia, extreme fear, and panic. It is the essential dilemma at the heart of psychedelic experimentation—there are no guarantees going in, and it is always, at least to a degree, a form of psychic Russian roulette.

  • 6-APB (Benzo Fury)
A lot of different drugs are sold as Benzo Fury, but the name comes originally from 6-APB, or 6-(2-aminopropyl)benzofuran. Like so many other designer amphetamines, 6-APB showed up online in 2010. The online drug discussion site Bluelight notes that vendors also peddle it as 6-APDB, 5-APDB, and 4-D as well. To date it has mostly surfaced as a club drug in the UK, and is chemically similar to MDA, another “entactogen” with strong body effects that was popular in the 60s as the “love drug.” Unfortunately Benzo Fury proved to be such a Euro-smash as a brand that drug sellers started packaging any research chemical at hand as Benzo Fury, so that the brand name has already become meaningless.

  • MDPV
3,4-methylenedioxypyrovalerone, frequently referred to as bath salts, or sometimes as Molly, which is supposed to mean MDMA, is primarily a methamphetamine-style stimulant, but can induce hallucinations at high doses, EROWID reports, as well as tachycardia and elevated blood pressure. As with speed, withdrawal can be extremely problematic, and increased mental and physical energy make this one highly reinforcing. Redosing is common. Recent studies strongly suggest that it is addictive in humans. A report at EROWID states: “Doing/coming off of MDPV is like winning a Mercedes and being told at the last minute they got your name wrong. Uggh.”

  • 5-MeO-DMT
This naturally occurring hallucinogenic tryptamine, 5-methoxy-N,N-dimethyltryptamine by name, has the unfortunate luck of sounding like another drug, simply called DMT. Both have hallucinogenic properties, but vaporized 5-MeO-DMT is active at 5 mg, where DMT is only active at a dosage about 5 times that high. So confusing the two drugs is not wise. High doses of 5-MeO-DMT can cause cardiac problems, convulsions, and mental confusion. Dealers who use them interchangeably are to be avoided. Unlike some of the other drugs in this list, 5-MeO-DMT has a long pedigree, in use since the 1970s, and is thought by some anthropologists to have been an ingredient in “shamanic snuff” used by early civilizations.

Photo Credit: http://legalmann.wordpress.com/



Tuesday, June 26, 2012

The New Highs: Are Bath Salts Addictive?


What we know and don’t know about synthetic speed.

Part II.

Call bath salts a new trend, if you insist. Do they cause psychosis? Are they “super-LSD?” The truth is, they are a continuation of a 70-year old trend: speed. Lately, we’ve been fretting about the Adderall Generation, but every population cohort has had its own confrontation with the pleasures and perils of speed: Ritalin, ice, Methedrine, crystal meth, IV meth, amphetamine, Dexedrine, Benzedrine… and so it goes. For addicts: Speed kills. Those two words were found all over posters in the Haight Ashbury district of San Francisco, a few years too late to do the residents much good.

While the matter of the addictiveness of Spice and other synthetic cannabis products remains open to question, there no longer seems to be much doubt about the stimulant drugs known collectively as bath salts. To a greater or lesser degree, these off-the-shelf synthetic stimulants appear to be potentially addictive. And that’s not good news for anyone.

Last week, the U.S. Congress added 26 additional synthetic chemicals to the Controlled Substances Act, including the designer stimulants mephedrone and MDPV, at the behest of the Drug Enforcement ResearchBlogging.orgAdministration. Mephedrone and MDPV are cathinones, sold as bath salts or plant food, and chemically similar to amphetamine and ephedrine. (Methcathinone, often called MCAT, is to cathinone as methamphetamine is to amphetamine)

The research news on bath salts at the annual meeting of the College on Problems of Drug  Dependence (CPDD) in Palm Springs recently was complex and confusing. For example, the phemonenon of overheating, or hyperthermia, that plagues ravers on MDMA and sends some of them to the hospital is a function of certain temperature-sensitive effects of Ecstasy. But it is not as much of a problem with MDPV and mephedrone. The bath salts, like meth, don’t seem to cause overheating as readily.

On another front, William Fantegrossi, assistant professor in the Department of Pharmacology and Toxicology at the University of Arkansas for Medical Sciences, told the panel audience that at very high doses and very high temperatures, stimulants like Ecstasy and MDPV “can cause self-mutilation in animals.”  Fantegrossi’s statement was the closest anybody has come to providing a possible scientific basis for popular press accounts linking bath salts to flesh-eating frenzies by psychotic users. But this remains speculative, as there are still no reliable toxicological findings available in such cases.

The symposium on bath salts at the CPDD played to a packed conference hall, a sure sign that professional scientists who study addiction for a living were interested in the subject. The panel was titled “A Stimulating Soak in ‘Bath Salts’: Investigating Cathinone Derivative Drugs,” and was co-chaired by Dr. Michael Taffe of the Scripps Research Institute in La Jolla, CA, and pharmacology professor Dr. Annette Fleckenstein of the University of Utah.

Fantegrossi characterized the overall problem of designer stimulants as “dirty pharmacology” on both sides, pointing to the desperate efforts underway by government-funded scientists to “throw antagonists [blocking drugs] at these things.”

Alexander Shulgin, the grandfather of the modern psychedelic movement, popularized MDMA and hundreds of variants in his backyard laboratory in the Bay Area over the years. Shulgin, better than anyone, knew that legitimate research and dirty recreational chemistry are only a molecule away. In their book Pihkal: A Chemical Love Story, Alexander Shulgin and his wife Ana recall that cartoonist Gary Trudeau captured the truth of the situation as far back as 1985, when the MDMA story became front-page news:

Way back in mid-1985, the cartoonist-author of Doonesbury, Gary Trudeau, did a two-week feature on it, playing it humorous, and almost (but not quite) straight, in a hilarious sequence of twelve strips. On August 19, 1985 he had Duke, president of Baby Doc College, introduce the drug design team from USC in the form of two brilliant twins, Drs. Albie and Bunny Gorp. They vividly demonstrated to the enthusiastic conference that their new drug "Intensity" was simply MDMA with one of the two oxygens removed. "Voila," said one of them, with a molecular model in his hands, "Legal as sea salt."

Jeffrey Moran of the Arkansas Department of Health noted that despite the cat-and-mouse game continuously played between illegal drug designers and the law, government bans on mephedrone and MDPV, the two most common forms of designer stimulant, cause only temporary downturns in supply. They are no longer as legal as sea salt, but it doesn’t seem to matter. There are always new ones in the pipeline. Moran told the audience that at least 48 different compounds had been identified in more than 200 distinct bath salt-style products in his state alone.  Sorting out the specific chemistry involves specialized assays designed to detect a bewildering array of molecules: methylone, mephedrone, paphyrone, butylone, 4-MEC, alpha-PVP, and a host of others, some old, some new, some reimagined by underground chemists. 

Terry Boos of the U.S. Drug Enforcement Agency explained that most designer stimulants currently in play are not manufactured stateside. Most originate in Asia and arrive through various ports of call, where they are repackaged for sale in the U.S. Purity of the cathinone ranges from 30 to 95 per cent, Boos said.

Annette Fleckenstein of the University of Utah emphasized that scientists shouldn’t be fooled by overall structural similarities among such drugs as meth, mephedrone, MDMA, and MDPV. In a 2011 study published with her colleagues at the University of Utah, Fleckenstein lamented that mephedrone’s recent emergence on the drug scene had exposed the fact that “there are no formal pharmacodynamic or pharmacokinetic studies of mephedrone.”

But she has managed to show that methamphetamine causes lasting decreases in serotonin functions, as well as the better-known dopamine alterations, and that MDMA and mephedrone are intimately involved in the accumulation of serotonin in the brain’s nucleus accumbens, where addictive drugs produce many of their rewarding effects. “Rats will self-administer mephedrone,” said Fleckenstein—always a troubling clue that the drug in question may have addictive properties.  Since the high in humans only last for three to six hours, there is a tendency to reinforce the behavior through repeated dosings.

Other behavioral clues have been teased out of rat studies. The Taffe Laboratory at Scripps Research Institute has focused on the cognitive, thermoregulatory, and potentially addictive effects of the cathinones. Rats will self-administer mephedrone, MDPV, and of course methamphetamine. However, Dr. Taffe told the audience that MDMA does not produce these classic locomotor stimulant effects at low doses and that it is “more difficult to get them to self-administer” Ecstasy. Nonetheless, Taffe told me he believes that MDMA is, in fact, potentially addictive. “Our data suggest that MDPV is highly reinforcing,” Taffe said in an email exchange after the conference, “and at least as readily self-administered as methamphetamine, at approximately the same per-infusion doses. But it is a very complicated story.”

Scripps researchers have carried the investigation forward with a new study, currently in press at the journal Drug and Alcohol Dependence. Pai-Kai Huang and coworkers studied the differing effects of designer stimulants on voluntary wheel-running activity in rats, adding additional evidence to the basic behavioral split among club drugs of the moment. Taffe, one of the study’s co-authors, said the researchers had predicted that the two drugs with the strongest serotonin activity—MDMA and the mephedrone variants—would decrease wheel running activity in the rats. Methedrine and MDPV, they predicted, would increase activity.

And that’s how it turned out. What that means for human users is still not entirely clear. But MDPV in particular, it now seems evident, has some rather direct and disturbing affinities with crystal meth and cocaine. And the vagaries of the market have led to sharp increases in the percentage of MDPV found in bath salt products in the last two years. Are we seeing the wholesale replacement of MDMA by a more directly addictive, methedrine-like drug? Will we see a rise in psychotic symptoms, and increased visits to the ER, as MDPV becomes more common in bath salts? Ecstasy has been implicated in the death of users as well, but will the surge in cathinone drugs mean there will be additional deaths?

And remember: Researchers are able to distinguish between rats under the influence of either MDMA- or MDPV-based wheel activity—but the research suggests that under blinded conditions, human users aren’t very good at guessing which of those two drugs they’re on. Furthermore, we don’t have the data to say whether users can tell mephedrone from MDPV in a blind test. And even wheel-running rats don’t give away whether they’re running on MDMA or mephedrone. These categorical distinctions are all-important, but still in relative infancy as far as street use is concerned.

The Scripps scientists concluded that their study “underlines the error of assuming all novel cathinone derivative stimulants that become popular with recreational users will share neuropharmacological or biobehavioral properties.” Some of the combinations produce a “unique constellation of desired effects.”

But by 2011, the U.S. media had conflated mephedrone with MDPV and half a dozen other substances, all with differing effects on users. For public health officials, it was a nightmare.

“We know that MDMA users follow the science,” Taffe said, at the close of the bath salts panel.  “So information we make available can have a direct effect on public health for those people.” But for bath salt users, the picture is not as clear. Consider, once again, Arkansas’ finding of 30 or 40 different cathinone derivatives, part of a set of 250 distinct chemicals identified in different combinations of bath salt products. “Slight modifications can change the toxicities,” Taffe said. “Abuse liabilities differ between MDMA and different cathinones. They all confer different health risks.” 

One of the primary drivers of bath salt usage appears to be the desire to finesse drug-testing programs. And if drug-testing programs are pushing people in the direction of more dangerous, unfamiliar, and addictive substances, then perhaps drug testing is part of the problem rather than the solution.

In the short run, emergency treatment of patients with OD symptoms they attribute to bath salts will remain the same, whether the cathinone in question is mephedrone, MDPV, or some other variant. General emergency-department procedures for stimulant intoxication are standardized. People can suffer cardiac arrest from either MDMA or meth. And people can run very high temperatures with overdoses of any of these stimulants.

Are users listening? Do they believe any of the health warnings this time out, or have there been too many over the years, always strident and hysterical and overinflated?

Huang PK, Aarde SM, Angrish D, Houseknecht KL, Dickerson TJ, & Taffe MA (2012). Contrasting effects of d-methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxypyrovalerone, and 4-methylmethcathinone on wheel activity in rats. Drug and alcohol dependence PMID: 22664136

Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, Andrenyak DM, Vieira-Brock PL, German CL, Conrad KM, Hoonakker AJ, Gibb JW, Wilkins DG, Hanson GR, & Fleckenstein AE (2011). 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. The Journal of pharmacology and experimental therapeutics, 339 (2), 530-6 PMID: 21810934

Thursday, June 21, 2012

The Low Down on the New Highs


Not all bath salts are alike.

“You’re 16 hours into your 24-hour shift on the medic unit, and you find yourself responding to an “unknown problem” call.... Walking up to the patient, you note a slender male sitting wide-eyed on the sidewalk. His skin is noticeably flushed and diaphoretic, and he appears extremely tense. You notice slight tremors in his upper body, a clenched jaw and a vacant look in his eyes.... As you begin to apply the blood pressure cuff, the patient begins violently resisting and thrashing about on the sidewalk—still handcuffed. Nothing seems to calm him, and he simultaneously bangs his head on the sidewalk and tries to kick you... and his body temperature is 103.2° F. He doesn’t respond with anything other than basic “yes” and “no” answers. Recognizing the probable state of acute stimulant intoxication and the risks associated, you begin further treatment. You turn the patient compartment air conditioning on high and obtain large-bore IV access of normal saline and set an initial infusion rate of 250 cc/hour.... Later in your shift, you return to the same emergency department (ED) and are informed that the patient has been admitted for rhabdomyolysis and has admitted to taking “bath salts” for the past three days.”

This episode, taken from an article in a recent issue of the Journal of Emergency Medical Services by Jon Nevin, a California emergency medical technician and paramedic, aptly demonstrates the dilemmas facing medical workers since the explosion in usage of “bath salts.” A catchall category for a family of designer stimulants centered on chemicals known as cathinones, bath salts, which are of course no such thing, began filtering in from Europe. One of the more popular new club drugs was variously called meph, or CAT, or 4-MMC, or Meow Meow. The drug’s official name was mephedrone. It was a chemical cousin of amphetamine, with effects somewhat similar to those of Ecstasy (MDMA).

In 2011, calls to poison controls centers skyrocketed across the country as new and untested combinations of cathinones came on the market. Bewildered emergency room technicians and toxicologists were hard pressed to identify even basic ingredients. Recreational users never knew what was in the shiny foil packages, only what was purportedly not in them—a laundry list of recently proscribed chemicals, which the marketers proudly noted on the packaging. This endless Mobius strip of designer stimulant development and grey-market sales channels mean a lucrative hit-and-run business for the producers, but a completely unsafe landscape for recreational users, who act as voluntary guinea pigs for new combinations of poorly understood psychoactive compounds. It is from this underground designer milieu that MDMA came to the forefront, courtesy of clandestine work done by neurochemist Alexander Shulgin and associates. 

Mephedrone started showing up in the U.S. in 2010, and quickly spread via word of mouth and the Internet. This was not the synthetic marijuana in powder form being marketed as Spice and K2, although distribution channels were often the same. This was synthetic speed that could be dissolved and injected. The idea was, you could get high and still pass a random drug test, since drug tests didn’t have the sophisticated assays needed to sort out the cathinones. And you could escape the tightening net around Ecstasy use, and still get Ecstasy-like effects. And designer stimulants picked up another strong user base: heroin addicts and methadone users looked for a detection-free boost. They could stay enrolled in their methadone program, and dodge trouble with parole officers, and still party all weekend on bath salts. One big problem became apparent straightaway: The effect of bath salts varied wildly, from gentle stimulant to some sort of death’s-head equivalent of the brown acid at Woodstock.

Bath salts were easy to buy. These unregulated stimulants came in a bewildering array of mixtures, featuring dozens of ingredients and additives. Even when they weren’t blatantly available on the shelves of head shops and convenience stores, many outlets carried them—if you knew the street codes. What law enforcement officer would bust you for buying jewelry cleaner, for example? Cops and drug enforcement officers must long for the clarity of the old days. You had smack, you had crack, you had bathtub Methedrine (methamphetamine).

“Understanding what each of those substances can do physiologically is key to understanding their dangers and to determining how best to treat people who need medical assistance,” wrote Marc Kaufman, with the McLean Imaging Center at Harvard. The trouble is, that knowledge is hard to come by.

It's not hard to understand the allure of stimulants, designer or otherwise. Countless baby boomers and Gen Xers have sampled cocaine and methamphetamine on a recreational basis, and will have no trouble explaining the appeal: It just feels good. In the short run, these drugs boost self-esteem, physical stamina, locomotor skills, and verbal dexterity. The original Dr. Feelgood of New York hipster fame was injecting his ultracool clientele with amphetamines. Nothing felt better than speed, if you want to put it that way.

Cathinones, like methedrine and other form of speed, are primarily dopamine-active drugs. Though they are now illegal in the U.S., they were formerly of primary interest only to pharmaceutical researchers. The best-known cathinone sold as bath salt—mephedrone—has both dopamine and serotonin effects. It broke big in the UK a few years ago as a “legal” party drug alternative to MDMA. Mephedrone came packaged with other chemicals under various marketing guises. And soon, as legal heat came down on the drug, designers switched to near-beer variants, and eventually began flooding the bath salt markets with other cathinone drugs whose effects were equally murky. Users of bath salt products had been seduced, wrote Natasha Vargas-Cooper in Spin magazine, by the idea that they could “get high without testing dirty.”

In 2011, users of bath salt products started turning up in ERs in significant numbers. Some of them were suffering overdoses of MDMA or mephedrone, but last year a new twist on the cathinone molecular structure began to get serious traction in the states. To stay one jump ahead of the law, underground chemists began churning out large quantities of a different amphetamine variant with the tongue-twisting name of methylenedioxypyrovalerone: MDPV, for short. And what were EMTs and paramedics seeing in cases where the drug could be identified as MDPV? In a study in Clinical Toxicology of recent admissions involving self-reports of bath salt use, two regional poison centers reported that exposure to MDPV was becoming more common than mephedrone. And the clinical symptoms of overdose? Agitation, tachycardia, hallucinations, combative behavior, hypertension, chest pain, blurred vision—and at least one death. This synthetic cathinone was evidently capable of producing psychotic episodes requiring sedation. It all sounded eerily similar to the PCP overdoses of the 60s and 70s, when that dissociative veterinary anesthetic enjoyed a period of dubious notoriety.

The arrival of MDPV in the emergency rooms of American changed the picture considerably. Medical workers and drug enforcement officers were forced to admit that they were behind the rolling curve of drug permutations. Nobody knew what was in a given packet of bath salts or plant food, or whatever other disguise was in vogue this week. Nobody knew how much to take, or to determine how much had been taken. Doctors didn’t know enough about cathinones to consistently diagnose an overdose. And what little testing was available for detecting synthetic stimulants was costly and questionable.

As 2012 began, researchers around the world were feeling pressure to find ways of discriminating between the different kinds of cathinones involved in overdoses, as a way of beginning to seriously sort out the fact from the fiction, the dangers from the overblown scare stories.

Various hopeless phrases were bandied about to describe the task of the DEA’s Forensic Sciences labs—“Whack-a-Mole,” “Cat-and-Mouse,” and “losing battle” being among the most common. What has them baffled and demoralized is the fact that these new chemicals under the sun are being created by underground chemists with more than casual kitchen sink skills. And, as one undercover drug officer told Spin Magazine, “when you go out and seize a warehouse full of something packaged as Dragonfly, you really have no idea what it is.” Nor do you know whether you can make a case under the Federal Analog Act, which is supposed to make all this easier by allowing cops and courts to outlaw drugs that are “substantially similar” to drugs already proscribed. But deciding questions of that nature is a matter of sophisticated biochemistry.

Dr. Michael Taffe of the Scripps Research Institute in La Jolla, CA, and pharmacology professor Annette Fleckenstein of the University of Utah have been working on these questions in the lab. Building on previous work, they had begun to conclude from their own animal studies that when it came to cathinones, there could be a big difference in effect without much evidence of a difference in chemistry.

Taffe and Fleckenstein, working separately, had produced evidence of specific behavioral differences between mephedrone and MPDV. As co-chairs of what turned out to be one of the best-attended sessions at the recent annual meeting of the College on Problems of Drug Dependence, the two scientists proceeded to expand the general understanding of a drug running rampant across three continents, and previously associated only with the chewing of Khat, a mild stimulant plant found in Africa.

(End of Part I)

Graphics Credit: http://www.bytrade.com/

Tuesday, February 1, 2011

Drug Czar “Deeply Concerned” About Synthetic Stimulants


“Bath salts” come under federal scrutiny.

The Director of the Office of National Drug Control Policy issued a warning about the new synthetic stimulants now being clandestinely marketed as bath salts or insecticide.  Admitting that “we lack sufficient data to understand exactly how prevalent the use of these stimulants are,” Drug Czar Gil Kerlikowske nonetheless announced that the marketing of such drugs as mephedrone and MDPV was “both unacceptable and dangerous.”

A growing list of states, now including Michigan, Hawaii, Louisiana, Kentucky, North Dakota, and, recently, Florida, have introduced measures to ban the designer drugs, currently being sold under names like “Ivory Wave” or “Purple Wave.” The United Kingdom has already put mephedrone and related drugs under a blanket ban. The drugs are considered addictive, primarily because they are chemically similar to amphetamine and ephedrine. But users often refer to effects more commonly associated with Ecstasy (MDMA), both the good (euphoria, empathy, talkativeness) and the bad (blood pressure spikes, delusions, drastic changes in body temperature).

“I am deeply concerned  about the distribution, sale, and use of synthetic stimulants—especially those that are marketed as legal substances,” Kerlikowske said. “I ask that parents and other adult influences act immediately to discuss with young people the severe harm that can be caused” by such drugs.

Kerlikowske, who will convene a panel of experts on the subject,  said he was acting in response to recent data from the American Association of Poison Control Centers, which showed that poison control units have received 251 calls related to “bath salts” so far this year, compared to a total of 236 calls in all of calendar year 2010.

An earlier post of mine on mephedrone can be found HERE. Some of the best coverage has come from the anonymous NIH researcher who blogs on science topics as DrugMonkey.  See also coverage of alleged mephedrone deaths by David Kroll HERE.


Photo Credit: http://www.astantin.com/
Related Posts Plugin for WordPress, Blogger...